Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2488388.2488500acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Uncovering locally characterizing regions within geotagged data

Published: 13 May 2013 Publication History

Abstract

We propose a novel algorithm for uncovering the colloquial boundaries of locally characterizing regions present in collections of labeled geospatial data. We address the problem by first modeling the data using scale-space theory, allowing us to represent it simultaneously across different scales as a family of increasingly smoothed density distributions. We then derive region boundaries by applying localized label weighting and image processing techniques to the scale-space representation of each label. Important insights into the data can be acquired by visualizing the shape and size of the resulting boundaries for each label at multiple scales. We demonstrate our technique operating at scale by discovering the boundaries of the most geospatially salient tags associated with a large collection of georeferenced photos from Flickr and compare our characterizing regions that emerge from the data with those produced by a recent technique from the research literature.

References

[1]
S. Ahern, M. Naaman, R. Nair, and J. Yang. World explorer: visualizing aggregate data from unstructured text in geo-referenced collections. JDCL, pp. 1--10, 2007.
[2]
T. Ai and J. Li. The lifespan model of GIS data representation over scale space. GEOINFORMATICS, pp. 1--6, 2009.
[3]
Y. Baba, F. Ishikawa, and S. Honiden. Extraction of places related to Flickr tags. ECAI, pp. 523--528, 2010.
[4]
T. Barkowsky, L. J. Latecki, and K.-F. Richter. Schematizing maps: simplification of geographic shape by discrete curve evolution. Spatial Cognition II, pp. 41--53, 2000.
[5]
H. Bay, A. Ess, T. Tuytelaars, and L. van Gool. Speeded-Up Robust Features (SURF). CVIU, 110(3):346--359, 2008.
[6]
F. Chang, C.-J. Chen, and C.-J. Lu. A linear-time component-labeling algorithm using contour tracing technique. CVIU, 93:206--220, 2004.
[7]
W.-C. Chen, A. Battestini, N. Gelfand, and V. Setlur. Visual summaries of popular landmarks from community photo collections. ICMR, pp. 789--782, 2009.
[8]
M. Cristani, A. Perina, U. Castellani, and V. Murino. Content visualization and management of geo-located image databases. CHI, pp. 2823--2828, 2008.
[9]
D.-P. Deng, T.-R. Chuang, and R. Lemmens. Conceptualization of place via spatial clustering and co-occurrence analysis. LBSN, pp. 49--56, 2009.
[10]
V. Estivill-Castro and I. Lee. AUTOCLUST: automatic clustering via boundary extraction for mining massive point-data sets. GeoComputation, 2001.
[11]
P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Theory of Computing, 8(1):415--428, 2012.
[12]
J. Gall. Use of cylindrical projections for geographical, astronomical, and scientific purposes. Scottish Geographical Magazine, 1(4):119--123, 1885.
[13]
W. W. Hargrove and F. M. Ho man. Using multivariate clustering to characterize ecoregion borders. CiSE, 1(4):18--25, 1999.
[14]
C. Hau and G.-J. Houben. Geo-location estimation of Flickr images: social web based enrichment. ECIR, pp. 85--96, 2012.
[15]
J. Hays and A. A. Efros. IM2GPS: estimating geographic information from a single image. CVPR, pp. 1--8, 2008.
[16]
H. Hotta and M. Hagiwara. A neural-network-based geographic tendency visualization. WI-IAT, pp. 817--823, 2008.
[17]
H. Hotta and M. Hagiwara. Online geovisualization with fast kernel density estimator. WI-IAT, pp. 622--625, 2009.
[18]
S. Intagorn and K. Lerman. Learning boundaries of vague places from noisy annotations. SIGSPATIAL, pp. 425--428, 2011.
[19]
A. Jaffe, M. Naaman, T. Tassa, and M. Davis. Generating summaries and visualization for large collections of geo-referenced photographs. MIR, pp. 89--98, 2006.
[20]
R. Jain. Experiential computing. CACM, 46(7):48--54, 2003.
[21]
C. B. Jones, R. S. Purves, P. D. Clough, and H. Joho. Modelling vague places with knowledge from the Web. IJGIS, 22(10):1045--1065, 2008.
[22]
D. Jung, H. Park, R. Maeng, and S. Han. A geometric pattern-based method to build hierarchies of geo-referenced tags. SocialCom, pp. 546--551, 2010.
[23]
L. S. Kennedy and M. Naaman. Generating diverse and representative image search results for landmarks. WWW, pp. 297--306, 2008.
[24]
L. S. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How Flickr helps us make sense of the world: context and content in community-contributed media collections. MM, pp. 631--640, 2007.
[25]
C. Kessler, P. Maue, J. T. Heuer, and T. Bartoschek. Bottom-up gazetteers: learning from the implicit semantics of geotags. GeoS, pp. 83--102, 2009.
[26]
J. Kleban, E. Moxley, J. Xu, and B. S. Manjunath. Global annotation on georeferenced photographs. CIVR, 2009.
[27]
J. J. Koenderink. The structure of images. Biological Cybernetics, 50:363--370, 1984.
[28]
I. Laptev, H. Mayer, T. Lindeberg, W. Eckstein, C. Steger, and A. Baumgartner. Automatic extraction of roads from aerial images based on scale space and snakes. Machine Vision and Applications, 12:23--31, 2000.
[29]
M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia information retrieval: state of the art and challenges. TOMCCAP, 2(1):1--19, 2006.
[30]
O. Linde and T. Lindeberg. Composed complex-cue histograms: An investigation of the information content in receptive field based image descriptors for object recognition. CVIU, 116(4):538--560, 2012.
[31]
T. Lindeberg. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus of attention. IJCV, 11(3):283--318, 1993.
[32]
D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91--110, 2004.
[33]
C.-A. Lu, C.-H. Chen, and P.-J. Cheng. Clustering and visualizing geographic data using geo-tree. WI-IAT, pp. 479--482, 2011.
[34]
R. Raguram, C. Wu, J.-M. Frahm, and S. Lazebnik. Modeling and recognition of landmark image collections using iconic scene graphs. IJCV, 95(3):213--239, 2011.
[35]
U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing, 1(3):244--256, 1972.
[36]
T. Rattenbury, N. Good, and M. Naaman. Towards automatic extraction of event and place semantics from Flickr tags. SIGIR, pp. 103--110, 2007.
[37]
T. Rattenbury and M. Naaman. Methods for extracting place semantics from Flickr tags. TWEB, 3(1):1, 2009.
[38]
S. Robertson and H. Zaragoza. The probabilistic relevance framework: BM25 and beyond. FTIR, 3(4):333--389, 2009.
[39]
S. Rudinac, A. Hanjalic, and M. Larson. Finding representative and diverse community contributed images to create visual summaries of geographic areas. ICMR, pp. 1109--1112, 2011.
[40]
P. Serdyukov, V. Murdock, and R. van Zwol. Placing Flickr photos on a map. SIGIR, pp. 484--491, 2009.
[41]
B. Sigurbjornsson and R. v. Zwol. Flickr Tag Recommendation based on Collective Knowledge. WWW, pp. 327--336, 2008.
[42]
M. Taylor, H. Zaragoza, N. Craswell, S. Robertson, and C. Burges. Optimisation methods for ranking functions with multiple parameters. CIKM, pp. 585--593, 2006.
[43]
B. Thomee and A. Rae. Exploring and Browsing Photos through Characteristic Geographic Tag Regions. MM, pp. 1273--1274, 2012.
[44]
O. Van Laere, S. Schockaert, and B. Dhoedt. Finding locations of Flickr resources using language models and similarity search. ICMR, article 48, 2011.
[45]
F. Wang. Job access and homicide patterns in Chicago: an analysis at multiple geographic levels based on scale-space theory. JQC, 21(2):195--217, 2005.
[46]
K. Q. Weinberger, M. Slaney, and R. van Zwol. Resolving tag ambiguity. MM, pp. 111--120, 2008.
[47]
A. Witkin. Scale-space filtering: a new approach to multi-scale description. ICASSP, 9:150--153, 1984.
[48]
K. Yanai, H. Kawakubo, and B. Qiu. A visual analysis of the relationship between word concepts and geographical locations. CIVR, article 13, 2009.

Cited By

View all
  • (2023)Pictorial Map Generation based on Color Extraction and Sentiment Analysis using SNS Photos2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)10.1109/IMCOM56909.2023.10035582(1-8)Online publication date: 3-Jan-2023
  • (2018)Generating Pictorial Maps for Tourists using Flickr Photo Data2018 IEEE 7th Global Conference on Consumer Electronics (GCCE)10.1109/GCCE.2018.8574722(403-407)Online publication date: Oct-2018
  • (2018)A framework for annotating OpenStreetMap objects using geo-tagged tweetsGeoinformatica10.1007/s10707-018-0323-822:3(589-613)Online publication date: 1-Jul-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '13: Proceedings of the 22nd international conference on World Wide Web
May 2013
1628 pages
ISBN:9781450320351
DOI:10.1145/2488388

Sponsors

  • NICBR: Nucleo de Informatcao e Coordenacao do Ponto BR
  • CGIBR: Comite Gestor da Internet no Brazil

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 May 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. flickr
  2. geotagged data
  3. region discovery
  4. scale-space theory
  5. spatial analysis

Qualifiers

  • Research-article

Conference

WWW '13
Sponsor:
  • NICBR
  • CGIBR
WWW '13: 22nd International World Wide Web Conference
May 13 - 17, 2013
Rio de Janeiro, Brazil

Acceptance Rates

WWW '13 Paper Acceptance Rate 125 of 831 submissions, 15%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)2
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Pictorial Map Generation based on Color Extraction and Sentiment Analysis using SNS Photos2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)10.1109/IMCOM56909.2023.10035582(1-8)Online publication date: 3-Jan-2023
  • (2018)Generating Pictorial Maps for Tourists using Flickr Photo Data2018 IEEE 7th Global Conference on Consumer Electronics (GCCE)10.1109/GCCE.2018.8574722(403-407)Online publication date: Oct-2018
  • (2018)A framework for annotating OpenStreetMap objects using geo-tagged tweetsGeoinformatica10.1007/s10707-018-0323-822:3(589-613)Online publication date: 1-Jul-2018
  • (2017)Where's Waldo?Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems10.1145/3139958.3139962(1-10)Online publication date: 7-Nov-2017
  • (2017)The Lifecycle of Geotagged DataProceedings of the 26th International Conference on World Wide Web Companion10.1145/3041021.3051102(927-929)Online publication date: 3-Apr-2017
  • (2017)Colloquial region discovery for retail products: discovery and applicationInternational Journal of Data Science and Analytics10.1007/s41060-017-0048-z4:1(17-34)Online publication date: 1-Jun-2017
  • (2016)The Lifecycle of Geotagged Multimedia DataProceedings of the 24th ACM international conference on Multimedia10.1145/2964284.2986911(1471-1472)Online publication date: 1-Oct-2016
  • (2016)Discovering Geographic Regions in the City Using Social Multimedia and Open DataMultiMedia Modeling10.1007/978-3-319-51814-5_13(148-159)Online publication date: 31-Dec-2016
  • (2015)Visual Overlay on OpenStreetMap Data to Support Spatial Exploration of Urban EnvironmentsISPRS International Journal of Geo-Information10.3390/ijgi40100874:1(87-104)Online publication date: 13-Jan-2015
  • (2015)Describing and Understanding Neighborhood Characteristics through Online Social MediaProceedings of the 24th International Conference on World Wide Web10.1145/2736277.2741133(549-559)Online publication date: 18-May-2015
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media