Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2882903.2903728acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Operator and Query Progress Estimation in Microsoft SQL Server Live Query Statistics

Published: 26 June 2016 Publication History

Abstract

We describe the design and implementation of the new Live Query Statistics (LQS) feature in Microsoft SQL Server 2016. The functionality includes the display of overall query progress as well as progress of individual operators in the query execution plan. We describe the overall functionality of LQS, give usage examples and detail all areas where we had to extend the current state-of-the-art to build the complete LQS feature. Finally, we evaluate the effect these extensions have on progress estimation accuracy with a series of experiments using a large set of synthetic and real workloads.

References

[1]
Program for TPC-H data generation with Skew. ftp://ftp.research.microsoft.com/users/viveknar/TPCDSkew/.
[2]
SESSION_LONGOPS. http://docs.oracle.com/cd/B19306_01/server.102/b14237/dynviews_2092.htm#REFRN30227.
[3]
S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and M. Syamala. Database Tuning Advisor for Microsoft SQL Server 2005. In VLDB, pages 1110--1121, 2004.
[4]
N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A Multidiemsnional Workload-Aware Histogram. In ACM SIGMOD, 2001.
[5]
S. Chaudhuri. An overview of Query Optimization in Relational Systems. In ACM PODS, 1998.
[6]
S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When can we trust Progress Estimators for SQL queries? In Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages 575--586. ACM, 2005.
[7]
S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating Progress of Execution for SQL queries. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pages 803--814. ACM, 2004.
[8]
C. M. Chen and N. Roussoploulos. Adaptive Selectivity Estimation Using Query Feedback. In Proceedings of the ACM SIGMOD Conference, pages 161--172, May 1994.
[9]
J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. Performance Prediction for Concurrent Database Workloads. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pages 337--348. ACM, 2011.
[10]
A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. I. Jordan, and D. Patterson. Predicting Multiple Metrics for Queries: Better Decisions enabled by Machine Learning. In Data Engineering, 2009. ICDE'09. IEEE 25th International Conference on, pages 592--603. IEEE, 2009.
[11]
G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing Surveys (CSUR), 25(2):73--169, 1993.
[12]
R. H. Güting. Operator-Based Query Progress Estimation. Technical Report 343--2/2008, FernUniversit\"at Hagen, February 2008.
[13]
J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online Aggregation. ACM SIGMOD Record, 26(2):171--182, 1997.
[14]
A. König and G. Weikum. Combining Histograms and Parametric Curve Fitting for Feedback-Driven Query Result-size Estimation. In 25th International Conference on Very Large Databases, 1999.
[15]
A. C. König, B. Ding, S. Chaudhuri, and V. Narasayya. A Statistical Approach towards Robust Progress Estimation. Proceedings of the VLDB Endowment, 5(4):382--393, 2011.
[16]
P.-A. Larson, C. Clinciu, C. Fraser, E. N. Hanson, M. Mokhtar, M. Nowakiewicz, V. Papadimos, S. L. Price, S. Rangarajan, R. Rusanu, and M. Saubhasik. Enhancements to SQL Server Column Stores. In ACM SIGMOD, 2013.
[17]
P.-A. Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price, S. Rangarajan, A. Surna, and Q. Zhou. Sql Server Column Store Indexes. In ACM SIGMOD, 2011.
[18]
J. Li, R. Nehme, and J. Naughton. GSLPI: A Cost-based Query Progress Indicator. In Data Engineering (ICDE), 2012 IEEE 28th International Conference on, pages 678--689. IEEE, 2012.
[19]
J. Li, R. V. Nehme, and J. F. Naughton. Toward Progress Indicators on Steroids for Big Data Systems. In CIDR, 2013.
[20]
L. Lim, M. Wang, and J. S. Vitter. SASH: a Self-adaptive Histogram Set for Dynamically Changing Workloads. In VLDB, 2003.
[21]
G. Luo, J. Naughton, and P. Yu. Multi-query SQL Progress Indicators. In EDBT, pages 921--941, 2006.
[22]
G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke. Toward a progress indicator for database queries. In Proceedings of the 2004 ACM SIGMOD international conference on Management of data, pages 791--802. ACM, 2004.
[23]
G. Luo, J. F. Naughton, C. J. Ellmann, and M. W. Watzke. Increasing the Accuracy and Coverage of SQL Progress Indicators. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Conference on, pages 853--864. IEEE, 2005.
[24]
C. Mishra and N. Koudas. A Lightweight Online Framework for Query Progress Indicators. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 1292--1296. IEEE, 2007.
[25]
K. Morton, M. Balazinska, and D. Grossman. ParaTimer: a Progress Indicator for Mapreduce DAGs. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data, pages 507--518. ACM, 2010.
[26]
K. Morton, A. Friesen, M. Balazinska, and D. Grossman. Estimating the Progress of MapReduce Pipelines. In 26th International Conference on Data Engineering (ICDE). IEEE, 2010.
[27]
M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO - DB2's Learning Optimizer. In Proceedings of the 27th Conference on Very Large Databases, Rome, Italy, 2001.
[28]
N. Thaper, S. Guha, P. Indyk, and N. Koudas. Dynamic Multidimensional Histograms. In Proceedings of ACM SIGMOD Conference, Madison, USA, pages 428--439, 2002.
[29]
W. Wu, Y. Chi, H. Hacıgümüş, and J. F. Naughton. Towards Predicting Query Execution Time for Concurrent and Dynamic Database Workloads. Proceedings of the VLDB Endowment, 6(10):925--936, 2013.
[30]
W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigumus, and J. F. Naughton. Predicting Query Execution Time: Are Optimizer Cost Models really Unusable? In Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages 1081--1092. IEEE, 2013.

Cited By

View all
  • (2024)Hit the Gym: Accelerating Query Execution to Efficiently Bootstrap Behavior Models for Self-Driving Database Management SystemsProceedings of the VLDB Endowment10.14778/3681954.368203017:11(3680-3693)Online publication date: 1-Jul-2024
  • (2024)Progress Estimation for End-to-End Training of Deep Learning Models With Online Data PreprocessingIEEE Access10.1109/ACCESS.2024.335999612(18658-18684)Online publication date: 2024
  • (2022)On inter-operator data transfers in query processing2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00066(820-832)Online publication date: May-2022
  • Show More Cited By

Index Terms

  1. Operator and Query Progress Estimation in Microsoft SQL Server Live Query Statistics

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGMOD '16: Proceedings of the 2016 International Conference on Management of Data
      June 2016
      2300 pages
      ISBN:9781450335317
      DOI:10.1145/2882903
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 26 June 2016

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. database administration
      2. databases query progress estimation

      Qualifiers

      • Research-article

      Conference

      SIGMOD/PODS'16
      Sponsor:
      SIGMOD/PODS'16: International Conference on Management of Data
      June 26 - July 1, 2016
      California, San Francisco, USA

      Acceptance Rates

      Overall Acceptance Rate 785 of 4,003 submissions, 20%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)22
      • Downloads (Last 6 weeks)3
      Reflects downloads up to 09 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Hit the Gym: Accelerating Query Execution to Efficiently Bootstrap Behavior Models for Self-Driving Database Management SystemsProceedings of the VLDB Endowment10.14778/3681954.368203017:11(3680-3693)Online publication date: 1-Jul-2024
      • (2024)Progress Estimation for End-to-End Training of Deep Learning Models With Online Data PreprocessingIEEE Access10.1109/ACCESS.2024.335999612(18658-18684)Online publication date: 2024
      • (2022)On inter-operator data transfers in query processing2022 IEEE 38th International Conference on Data Engineering (ICDE)10.1109/ICDE53745.2022.00066(820-832)Online publication date: May-2022
      • (2022)Improving the Accuracy of Progress Indication for Constructing Deep Learning ModelsIEEE Access10.1109/ACCESS.2022.318149310(63754-63781)Online publication date: 2022
      • (2021)Fine-Grained Dynamic Resource Allocation for Big-Data ApplicationsIEEE Transactions on Software Engineering10.1109/TSE.2019.293153747:8(1668-1682)Online publication date: 1-Aug-2021
      • (2020)Progress Indication for Deep Learning Model Training: A Feasibility DemonstrationIEEE Access10.1109/ACCESS.2020.29896848(79811-79843)Online publication date: 2020
      • (2019)Plan-structured deep neural network models for query performance predictionProceedings of the VLDB Endowment10.14778/3342263.334264612:11(1733-1746)Online publication date: 1-Jul-2019
      • (2019)Symbolic execution-driven extraction of the parallel execution plans of Spark applicationsProceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering10.1145/3338906.3338973(246-256)Online publication date: 12-Aug-2019
      • (2019)MIFOProceedings of the 2019 International Conference on Management of Data10.1145/3299869.3319902(1678-1695)Online publication date: 25-Jun-2019
      • (2018)Progress Indication for Machine Learning Model BuildingACM SIGKDD Explorations Newsletter10.1145/3299986.329998820:2(1-12)Online publication date: 11-Dec-2018
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media