Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3635637.3662879acmconferencesArticle/Chapter ViewAbstractPublication PagesaamasConference Proceedingsconference-collections
research-article

Deep Anomaly Detection via Active Anomaly Search

Published: 06 May 2024 Publication History

Abstract

Anomaly detection (AD) holds substantial practical value, and considering the limited labeled data, the semi-supervised anomaly detection technique has garnered increasing attention. We find that previous methods suffer from insufficient exploitation of labeled data and under-exploration of unlabeled data. To tackle the above problem, we aim to search for possible anomalies in unlabeled data and use the searched anomalies to enhance performance. We innovatively model this search process as a Markov decision process and utilize a reinforcement learning algorithm to solve it. Our method, Deep Anomaly Detection and Search (DADS), integrates the exploration of unlabeled data and the exploitation of labeled data into one framework. Experimentally, we compare DADS with several state-of-the-art methods in widely used benchmarks, and the results show that DADS can efficiently search anomalies from unlabeled data and learn from them, thus achieving good performance. Code: https://github.com/LAMDA-RL/DADS

References

[1]
Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, Vol. 34, 6 (2017), 26--38.
[2]
Liron Bergman and Yedid Hoshen. 2020. Classification-based anomaly detection for deneral data. In International Conference on Learning Representations.
[3]
Sinan Çalişir and Meltem Kurt Pehlivanoug lu. 2019. Model-free reinforcement learning algorithms: A survey. In 2019 27th signal processing and communications applications conference (SIU). IEEE, 1--4.
[4]
Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. Comput. Surveys, Vol. 41, 3 (2009), 1--58.
[5]
Chun-Hao Chang, Jinsung Yoon, Sercan Arik, Madeleine Udell, and Tomas Pfister. 2022. Data-efficient and interpretable tabular anomaly detection. arXiv preprint arXiv:2203.02034 (2022).
[6]
Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2009. Semi-supervised learning. IEEE Transactions on Neural Networks, Vol. 20, 3 (2009), 542--542.
[7]
Arthur Charpentier, Romuald Elie, and Carl Remlinger. 2021. Reinforcement learning in economics and finance. Computational Economics (2021), 1--38.
[8]
Parikshit Gopalan, Vatsal Sharan, and Udi Wieder. 2019. Pidforest: anomaly detection via partial identification. Advances in Neural Information Processing Systems, Vol. 32 (2019).
[9]
Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. 2013. Toward supervised anomaly detection. Journal of Artificial Intelligence Research, Vol. 46 (2013), 235--262.
[10]
Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine Learning. 1861--1870.
[11]
Chengxing Jia, Fuxiang Zhang, Tian Xu, Jing-Cheng Pang, Zongzhang Zhang, and Yang Yu. 2024. Model gradient: unified model and policy learning in model-based reinforcement learning. Frontiers of Computer Science, Vol. 18, 4 (2024), 184339.
[12]
Minqi Jiang, Songqiao Han, and Hailiang Huang. 2023. Anomaly Detection with Score Distribution Discrimination. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (, Long Beach, CA, USA,) (KDD '23). Association for Computing Machinery, New York, NY, USA, 984--996.
[13]
Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Reinforcement learning: A survey. Journal of Artificial Intelligence Research, Vol. 4 (1996), 237--285.
[14]
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature, Vol. 521, 7553 (2015), 436--444.
[15]
Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In IEEE International Conference on Data Mining. 413--422.
[16]
Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. 2024. A survey on model-based reinforcement learning. Science China Information Sciences, Vol. 67, 2 (2024), 121101.
[17]
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through deep reinforcement learning. Nature, Vol. 518, 7540 (2015), 529--533.
[18]
Thanh Thi Nguyen and Vijay Janapa Reddi. 2023. Deep reinforcement learning for cyber security. IEEE Transactions on Neural Networks and Learning Systems, Vol. 34, 8 (2023), 3779--3795.
[19]
Guansong Pang, Chunhua Shen, and Anton van den Hengel. 2019. Deep anomaly detection with deviation networks. In ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 353--362.
[20]
Guansong Pang, Anton van den Hengel, Chunhua Shen, and Longbing Cao. 2021. Toward deep supervised anomaly detection: Reinforcement learning from partially labeled anomaly data. In ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1298--1308.
[21]
Chen Qiu, Aodong Li, Marius Kloft, Maja Rudolph, and Stephan Mandt. 2022. Latent outlier exposure for anomaly detection with contaminated data. In International Conference on Machine Learning. PMLR, 18153--18167.
[22]
Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek, Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. 2021. A unifying review of deep and shallow anomaly detection. Proc. IEEE (2021), 756--795.
[23]
Lukas Ruff, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder, Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft. 2019. Deep Semi-Supervised Anomaly Detection. CoRR, Vol. abs/1906.02694 (2019).
[24]
Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017. Deep reinforcement learning framework for autonomous driving. Electronic Imaging, Vol. 2017, 19 (2017), 70--76.
[25]
David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without human knowledge. Nature, Vol. 550, 7676 (2017), 354--359.
[26]
Miryam Elizabeth Villa-Pérez, Miguel Á Álvarez-Carmona, Octavio Loyola-González, Miguel Angel Medina-Pérez, Juan Carlos Velazco-Rossell, and Kim-Kwang Raymond Choo. 2021. Semi-supervised anomaly detection algorithms: A comparative summary and future research directions. Knowledge-Based Systems, Vol. 218 (2021), 106878.
[27]
Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan O Arik, Chen-Yu Lee, and Tomas Pfister. 2021. Self-supervise, refine, repeat: Improving unsupervised anomaly detection. arXiv preprint arXiv:2106.06115 (2021).
[28]
Jinsung Yoon, Kihyuk Sohn, Chun-Liang Li, Sercan O Arik, and Tomas Pfister. 2022. SPADE: Semi-supervised Anomaly Detection under Distribution Mismatch. arXiv preprint arXiv:2212.00173 (2022).
[29]
Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. 2021. Reinforcement learning in healthcare: A survey. Comput. Surveys, Vol. 55, 1 (2021), 1--36.
[30]
Shixiang Zhu, Henry Shaowu Yuchi, Minghe Zhang, and Yao Xie. 2019. Sequential adversarial anomaly detection for one-class event data. arXiv preprint arXiv:1910.09161 (2019).

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems
May 2024
2898 pages
ISBN:9798400704864

Sponsors

Publisher

International Foundation for Autonomous Agents and Multiagent Systems

Richland, SC

Publication History

Published: 06 May 2024

Check for updates

Author Tags

  1. anomaly detection
  2. deep learning
  3. reinforcement learning

Qualifiers

  • Research-article

Funding Sources

  • National Natural Science Foundation of China
  • Alibaba Research Fellowship Program

Conference

AAMAS '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,155 of 5,036 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 30
    Total Downloads
  • Downloads (Last 12 months)30
  • Downloads (Last 6 weeks)9
Reflects downloads up to 13 Sep 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media