Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Optimal Oblivious Routing With Concave Objectives for Structured Networks

Published: 12 April 2023 Publication History

Abstract

Oblivious routing distributes traffic from sources to destinations following predefined routes with rules independent of traffic demands. While finding optimal oblivious routing with a concave objective is intractable for general topologies, we show that it is tractable for structured topologies often used in datacenter networks. To achieve this, we apply graph automorphism and prove the existence of the optimal automorphism-invariant solution. This result reduces the search space to targeting the optimal automorphism-invariant solution. We design an iterative algorithm to obtain such a solution by alternating between convex optimization and a linear program. The convex optimization finds an automorphism-invariant solution based on representative variables and constraints, making the problem tractable. The linear program generates adversarial demands to ensure the final result satisfies all possible demands. Since the construction of the representative variables and constraints are combinatorial problems, we design polynomial-time algorithms for the construction. We evaluate the iterative algorithm in terms of throughput performance, scalability, and generality over three potential applications. The algorithm i) improves the throughput up to 87.5&#x0025; for partially deployed FatTree and achieves up to <inline-formula> <tex-math notation="LaTeX">$2.55\times $ </tex-math></inline-formula> throughput gain for DRing over heuristic algorithms, ii) scales for three considered topologies with a thousand switches, iii) applies to a general structured topology with non-uniform link capacity and server distribution.

References

[1]
M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data center network architecture,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 63–74, 2008. 10.1145/1402946.1402967.
[2]
A. Greenberget al., “VL2: A scalable and flexible data center network,” ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62, 2009. 10.1145/1594977.1592576.
[3]
A. Singhet al., “Jupiter rising: A decade of clos topologies and centralized control in Google’s datacenter network,” ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4, pp. 183–197, 2015. 10.1145/2829988.2787508.
[4]
A. Andreyev. Introducing Data Center Fabric, the Next-Generation Facebook Data Center Network. Accessed: Apr. 8, 2023. [Online]. Available: https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
[5]
J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber, “HyperX: Topology, routing, and packaging of efficient large-scale networks,” in Proc. Conf. High Perform. Comput. Netw., Storage Anal., New York, NY, USA, Nov. 2009, pp. 1–11. 10.1145/1654059.1654101.
[6]
J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable dragonfly topology,” in Proc. Int. Symp. Comput. Archit., 2008, pp. 77–88.
[7]
M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter network topology,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2014, pp. 348–359.
[8]
A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Networking data centers randomly,” in Proc. 9th USENIX Symp. Networked Syst. Design Implement. (NSDI), San Jose, CA, USA, Apr. 2012, pp. 225–238. [Online]. Available: https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
[9]
A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander: Towards optimal-performance datacenters,” in Proc. 12th Int. Conf. Emerg. Netw. EXperiments Technol., New York, NY, USA, Dec. 2016, pp. 205–219. 10.1145/2999572.2999580.
[10]
A. Singla, P. B. Godfrey, and A. Kolla, “High throughput data center topology design,” in Proc. 11th USENIX Symp. Networked Syst. Design Implement. (NSDI). Seattle, WA, USA, Apr. 2014, pp. 29–41. [Online]. Available: https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla
[11]
M. Zhang, R. N. Mysore, S. Supittayapornpong, and R. Govindan, “Understanding lifecycle management complexity of datacenter topologies,” in Proc. 16th USENIX Symp. Networked Syst. Design Implement. (NSDI), Boston, MA, USA, Feb. 2019, pp. 235–254. [Online]. Available: https://www.usenix.org/conference/nsdi19/presentation/zhang
[12]
V. Harsh, S. A. Jyothi, and P. B. Godfrey, “Spineless data centers,” in Proc. 19th ACM Workshop Hot Topics Netw., New York, NY, USA, Nov. 2020, pp. 67–73. 10.1145/3422604.3425945.
[13]
D. Thaler and C. Hopps RFC2991: Multipath Issues in Unicast and Multicast Next-Hop Selection. Accessed: Apr. 8, 2023. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc2991
[14]
R. Zhang-Shen and N. McKeown, “Guaranteeing quality of service to peering traffic,” in Proc. IEEE INFOCOM 27th Conf. Comput. Commun., Apr. 2008, pp. 1472–1480.
[15]
M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Preconfiguring IP-over-optical networks to handle router failures and unpredictable traffic,” IEEE J. Sel. Areas Commun., vol. 25, no. 5, pp. 934–948, Jun. 2007.
[16]
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera: Dynamic flow scheduling for data center networks,” in Proc. 7th USENIX Conf. Networked Syst. Design Implement., 2010, p. 19.
[17]
A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the social network’s (datacenter) network,” ACM Comput. Commun. Rev., vol. 45, no. 4, pp. 123–137, 2015. 10.1145/2829988.2787472.
[18]
L. G. Valiant and G. J. Brebner, “Universal schemes for parallel communication,” in Proc. 13th Annu. ACM Symp. Theory Comput., New York, NY, USA, 1981, pp. 263–277. 10.1145/800076.802479.
[19]
L. G. Valiant, “A scheme for fast parallel communication,” SIAM J. Comput., vol. 11, no. 2, pp. 350–361, 1982. 10.1137/0211027.
[20]
M. Kodialam, T. Lakshman, and S. Sengupta, “Efficient and robust routing of highly variable traffic,” in Proc. 3rd Workshop Hot Topics Netw. (HotNets-III), 2004, pp. 1–6.
[21]
M. Kodialam, T. V. Lakshman, and S. Sengupta, “Maximum throughput routing of traffic in the hose model,” in Proc. IEEE INFOCOM Int. Conf. Comput. Commun., Apr. 2006, pp. 1–11.
[22]
M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta, “Oblivious routing of highly variable traffic in service overlays and IP backbones,” IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 459–472, Apr. 2009.
[23]
M. Kodialam, T. V. Lakshman, and S. Sengupta, “Traffic-oblivious routing in the hose model,” IEEE/ACM Trans. Netw., vol. 19, no. 3, pp. 774–787, Jun. 2011.
[24]
H. Räcke, “Minimizing congestion in general networks,” in Proc. 43rd Annu. IEEE Symp. Found. Comput. Sci., Nov. 2002, pp. 43–52.
[25]
H. Räcke, “Optimal hierarchical decompositions for congestion minimization in networks,” in Proc. 4th Annu. ACM Symp. Theory Comput., New York, NY, USA, 2008, pp. 255–264. 10.1145/1374376.1374415.
[26]
Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke, “Optimal oblivious routing in polynomial time,” in Proc. 34th Annu. ACM Symp. Theory Comput., New York, NY, USA, Jun. 2003, pp. 38–388. 10.1145/780542.780599.
[27]
D. Applegate and E. Cohen, “Making intra-domain routing robust to changing and uncertain traffic demands: Understanding fundamental tradeoffs,” in Proc. Conf. Appl., Technol., Architectures, Protocols Comput. Commun., New York, NY, USA, Aug. 2003, pp. 313–324. 10.1145/863955.863991.
[28]
D. Applegate and E. Cohen, “Making routing robust to changing traffic demands: Algorithms and evaluation,” IEEE/ACM Trans. Netw., vol. 14, no. 6, pp. 1193–1206, Dec. 2006.
[29]
R. Zhang-Shen and N. McKeown, “Designing a predictable internet backbone with valiant load-balancing,” in Proc. 13th Int. Conf. Quality Service. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 178–192.
[30]
J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approximating arbitrary metrics by tree metrics,” in Proc. 34th Annu. ACM Symp. Theory Comput., New York, NY, USA, Jun. 2003, pp. 448–455. 10.1145/780542.780608.
[31]
C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell: A scalable and fault-tolerant network structure for data centers,” in Proc. SIGCOMM, Aug. 2008, pp. 75–86. [Online]. Available: https://www.microsoft.com/en-us/research/publication/dcell-a-scalable-and-fault-tolerant-network-structure-for-data-centers/
[32]
C. Guoet al., “BCube: A high performance, server-centric network architecture for modular data centers,” in Proc. ACM SIGCOMM, Aug. 2009, pp. 63–74. [Online]. Available: https://www.microsoft.com/en-us/research/publication/bcube-a-high-performance-server-centric-network-architecture-for-modular-data-centers/
[33]
Broadcom. Tomahawk4/BCM56990 Series. Accessed: Apr. 8, 2023. [Online]. Available: https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56990-series
[34]
S. Supittayapornpong, B. Raghavan, and R. Govindan, “Towards highly available clos-based WAN routers,” in Proc. ACM Special Interest Group Data Commun., New York, NY, USA, Aug. 2019, pp. 424–440. 10.1145/3341302.3342086.
[35]
P. Namyar, S. Supittayapornpong, M. Zhang, M. Yu, and R. Govindan, “A throughput-centric view of the performance of datacenter topologies,” in Proc. ACM SIGCOMM Conf., New York, NY, USA, Aug. 2021, pp. 349–369. 10.1145/3452296.3472913.
[36]
S. Supittayapornpong, P. Namyar, M. Zhang, M. Yu, and R. Govindan, “Optimal oblivious routing for structured networks,” in Proc. IEEE INFOCOM Conf. Comput. Commun., 2022, pp. 1988–1997.
[37]
F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun., vol. 8, no. 1, pp. 33–37, Jan./Feb. 1997. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4460080106
[38]
R. Srikant and L. Ying, Communication Networks: An Optimization, Control and Stochastic Networks Perspective. Cambridge, U.K.: Cambridge Univ. Press, 2014.
[39]
J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Netw., vol. 8, no. 5, pp. 556–567, Oct. 2000.
[40]
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
[41]
S. Boyd and L. Vandenberghe, “Localization and cutting-plane methods,” From Stanford EE 364b Lecture Notes, Stanford Univ., Stanford, CA, USA, 2007.
[42]
B. Towles and W. Dally, “Worst-case traffic for oblivious routing functions,” IEEE Comput. Archit. Lett., vol. 1, no. 1, p. 4, Jan. 2002.
[43]
S. A. Jyothi, A. Singla, P. B. Godfrey, and A. Kolla, “Measuring and understanding throughput of network topologies,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2016, pp. 761–772.
[44]
B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” J. Symbolic Comput., vol. 60, pp. 94–112, Jan. 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0747717113001193
[45]
M. ApS. (2022). MOSEK Fusion API for Python 9.3.21. [Online]. Available: https://docs.mosek.com/9.3/pythonfusion/index.html
[46]
J. Zhouet al., “WCMP: Weighted cost multipathing for improved fairness in data centers,” in Proc. 9th Eur. Conf. Comput. Syst., New York, NY, USA, Apr. 2014, pp. 1–14. 10.1145/2592798.2592803.

Index Terms

  1. Optimal Oblivious Routing With Concave Objectives for Structured Networks
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image IEEE/ACM Transactions on Networking
    IEEE/ACM Transactions on Networking  Volume 31, Issue 6
    Dec. 2023
    894 pages

    Publisher

    IEEE Press

    Publication History

    Published: 12 April 2023
    Published in TON Volume 31, Issue 6

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 12
      Total Downloads
    • Downloads (Last 12 months)12
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 12 Nov 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media