Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2666158.2666182acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

SM4AM: A Semantic Metamodel for Analytical Metadata

Published: 07 November 2014 Publication History

Abstract

Next generation BI systems emerge as platforms where traditional BI tools meet semi-structured and unstructured data coming from the Web. In these settings, the user-centric orientation represents a key characteristic for the acceptance and wide usage by numerous and diverse end users in their data analysis tasks. System and user related metadata are the base for enabling user assistance features. However, current approaches typically store these metadata in ad-hoc manners. In this paper, we propose a generic and extensible approach for the definition and modeling of the relevant metadata artifacts. We present SM4AM, a Semantic Metamodel for Analytical Metadata created as an RDF formalization of the Analytical Metadata artifacts needed for user assistance exploitation purposes in next generation BI systems. We consider the Linked Data initiative and its relevance for user assistance functionalities. We discuss the metamodel benefits and present directions for future work.

References

[1]
A. Abelló, O. Romero, T. B. Pedersen, R. Berlanga, V. Nebot, M. J. Aramburu, and A. Simitsis. Using Semantic Web Technologies for Exploratory OLAP: A Survey. IEEE Trans. Knowl. Data Eng., In Press, 2014.
[2]
S. Abiteboul, I. Manolescu, P. Rigaux, M. Rousset, and P. Senellart. Web Data Management. Cambridge University Press, 2012.
[3]
G. Adomavicius and A. Tuzhilin. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data Eng., 17(6):734--749, 2005.
[4]
G. Adomavicius and A. Tuzhilin. Context-Aware Recommender Systems. In Recommender Systems Handbook, pages 217--253. Springer, 2011.
[5]
J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. SQL QueRIE Recommendations. PVLDB, 3(2):1597--1600, 2010.
[6]
M.-A. Aufaure, N. Kuchmann-Beauger, P. Marcel, S. Rizzi, and Y. Vanrompay. Predicting Your Next OLAP Query Based on Recent Analytical Sessions. In DaWaK, pages 134--145, 2013.
[7]
L. Bellatreche, A. Giacometti, P. Marcel, H. Mouloudi, and D. Laurent. A Personalization Framework for OLAP Queries. In DOLAP, pages 9--18, 2005.
[8]
C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Int. J. Semantic Web Inf. Syst., 5(3):1--22, 2009.
[9]
G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query Recommendations for Interactive Database Exploration. In SSDBM, pages 3--18, 2009.
[10]
L. Etcheverry, A. Vaisman, and E. Zimányi. Modeling and Querying Data Warehouses on the Semantic Web using QB4OLAP. In DaWaK, 2014. In Press.
[11]
A. Giacometti, P. Marcel, and E. Negre. A Framework for Recommending OLAP Queries. In DOLAP, pages 73--80, 2008.
[12]
M. Golfarelli and S. Rizzi. Expressing OLAP Preferences. In SSDBM, pages 83--91, 2009.
[13]
M. Golfarelli, S. Rizzi, and P. Biondi. myOLAP: An Approach to Express and Evaluate OLAP Preferences. IEEE Trans. Knowl. Data Eng., 23(7):1050--1064, 2011.
[14]
T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool Publishers, 2011.
[15]
M. Jarke, M. A. Jeusfeld, H. W. Nissen, and C. Quix. Heterogeneity in Model Management: A Meta Modeling Approach. In Conceptual Modeling: Foundations and Applications, pages 237--253. Springer, 2009.
[16]
P. Jovanovic, O. Romero, A. Simitsis, A. Abelló, and D. Mayorova. A Requirement-Driven Approach to the Design and Evolution of Data Warehouses. Inf. Syst., 44:94--119, 2014.
[17]
S. Khouri, I. Boukhari, L. Bellatreche, E. Sardet, S. Jean, and M. Baron. Ontology-based Structured Web Data Warehouses for Sustainable Interoperability: Requirement Modeling, Design Methodology and Tool. Computers in Industry, 63(8):799--812, 2012.
[18]
N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. SnipSuggest: Context-Aware Autocompletion for SQL. PVLDB, 4(1):22--33, 2010.
[19]
R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite. The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing, and Deploying Data Warehouses. John Wiley & Sons, Inc., 1998.
[20]
M. Middelfart and T. B. Pedersen. The Meta-Morphing Model Used in TARGIT BI Suite. In ER Workshops, pages 364--370, 2011.
[21]
V. Nebot and R. B. Llavori. Building Data Warehouses with Semantic Web Data. Decision Support Systems, 52(4):853--868, 2012.
[22]
Object Management Group. Common Warehouse Metamodel Specification 1.1, last accessed July, 2014. http://www.omg.org/spec/CWM/1.1/PDF/.
[23]
T. B. Pedersen. Multidimensional Modeling. In Encyclopedia of Database Systems, pages 1777--1784. Springer US, 2009.
[24]
O. Romero and A. Abelló. On the Need of a Reference Algebra for OLAP. In DaWaK, pages 99--110, 2007.
[25]
Tim Berners-Lee. Principles of Design, last accessed July, 2014. http://www.w3.org/DesignIssues/Principles.html.
[26]
J. Varga, O. Romero, T. B. Pedersen, and C. Thomsen. Towards Next Generation BI Systems: The Analytical Metadata Challenge. In DaWaK, 2014. In Press.

Cited By

View all
  • (2017)From Star Schemas to Big Data: 20 $$+$$ Years of Data Warehouse ResearchA Comprehensive Guide Through the Italian Database Research Over the Last 25 Years10.1007/978-3-319-61893-7_6(93-107)Online publication date: 31-May-2017
  • (2017)SM4MQ: A Semantic Model for Multidimensional QueriesThe Semantic Web10.1007/978-3-319-58068-5_28(449-464)Online publication date: 16-May-2017
  • (2015)Extended drill-down operator: Digging into the structure of performance indicatorsConcurrency and Computation: Practice and Experience10.1002/cpe.372628:15(3948-3968)Online publication date: 20-Nov-2015

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DOLAP '14: Proceedings of the 17th International Workshop on Data Warehousing and OLAP
November 2014
110 pages
ISBN:9781450309998
DOI:10.1145/2666158
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 November 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. BI 2.0
  2. RDF
  3. metadata
  4. metamodel
  5. user assistance

Qualifiers

  • Research-article

Conference

CIKM '14
Sponsor:

Acceptance Rates

DOLAP '14 Paper Acceptance Rate 8 of 22 submissions, 36%;
Overall Acceptance Rate 29 of 79 submissions, 37%

Upcoming Conference

CIKM '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)1
Reflects downloads up to 17 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2017)From Star Schemas to Big Data: 20 $$+$$ Years of Data Warehouse ResearchA Comprehensive Guide Through the Italian Database Research Over the Last 25 Years10.1007/978-3-319-61893-7_6(93-107)Online publication date: 31-May-2017
  • (2017)SM4MQ: A Semantic Model for Multidimensional QueriesThe Semantic Web10.1007/978-3-319-58068-5_28(449-464)Online publication date: 16-May-2017
  • (2015)Extended drill-down operator: Digging into the structure of performance indicatorsConcurrency and Computation: Practice and Experience10.1002/cpe.372628:15(3948-3968)Online publication date: 20-Nov-2015

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media