Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Dynamic Reasoning Systems

Published: 14 November 2015 Publication History

Abstract

A dynamic reasoning system (DRS) is an adaptation of a conventional formal logical system that explicitly portrays reasoning as a temporal activity, with each extralogical input to the system and each inference rule application being viewed as occurring at a distinct timestep. Every DRS incorporates some well-defined logic together with a controller that serves to guide the reasoning process in response to user inputs. Logics are generic, whereas controllers are application specific. Every controller does, nonetheless, provide an algorithm for nonmonotonic belief revision. The general notion of a DRS comprises a framework within which one can formulate the logic and algorithms for a given application and prove that the algorithms are correct, that is, that they serve to (1) derive all salient information and (2) preserve the consistency of the belief set. This article illustrates the idea with ordinary first-order predicate calculus, suitably modified for the present purpose, and two examples. The latter example revisits some classic nonmonotonic reasoning puzzles (Opus the Penguin, Nixon Diamond) and shows how these can be resolved in the context of a DRS, using an expanded version of first-order logic that incorporates typed predicate symbols. All concepts are rigorously defined and effectively computable, thereby providing the foundation for a future software implementation.

Supplementary Material

a32-schwartz-apndx.pdf (schwartz.zip)
Supplemental movie, appendix, image and software files for, Dynamic Reasoning Systems

References

[1]
C. E. Alchourón, P. Gärdenfors, and D. Makinson. 1985. On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic 50, 2, 510--530.
[2]
J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. 2005. The refined extension principle for semantics of dynamic logic programming. Studia Logica 79, 1, 7--32.
[3]
J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. 1998. Dynamic logic programming. In Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98). 98--109.
[4]
J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. 2000. Dynamic updates of non-monotonic knowledge bases. Journal of Logic Programming 45, 1--3, 43--70.
[5]
J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. 1999. LUPS-a language for updating logic programs. In Logic Programming and Nonmonotonic Reasoning. Springer, 162--176.
[6]
J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. C. Przymusinski. 2002. LUPS-a language for updating logic programs. Artificial Intelligence 138, 1--2, 87--116.
[7]
F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge, UK.
[8]
C. Baral. 2003. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press.
[9]
K. Britz, T. Meyer, and I. Varzinczak. 2011. Semantic foundation for preferential description logics. In Proceedings of the 24th Australasian Joint Conference on Artificial Intelligence (LNAI’11). 491--500.
[10]
P. Cabalar and T. C. Son (Eds.). 2013. Logic Programming and Nonmonotonic Reasoning: 12th International Conference, LPNMR 2013. Springer Verlag.
[11]
A. Church. 1936. A note on the Entscheidungsproblem. Journal of Symbolic Logic 1, 40--41.
[12]
J. Doyle. 1979. A truth maintenance system. Artificial Intelligence 12, 231--272.
[13]
T. Eiter, E. Erdem, M. Fink, and J. Senko. 2005. Updating action domain descriptions. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05). 418--423.
[14]
J. J. Elgot-Drapkin. 1988. Step Logic: Reasoning Situated in Time. Ph.D. Dissertation. University of Maryland, College Park.
[15]
J. J. Elgot-Drapkin, M. Miller, and D. Perlis. 1987. Life on a desert island: Ongoing work on real-time reasoning. In The Frame Problem in Artificial Intelligence: Proceedings of the 1987 Workshop, F. M. Brown (Ed.). Morgan Kaufmann, Los Altos, CA, 349--357.
[16]
J. J. Elgot-Drapkin, M. Miller, and D. Perlis. 1991. Memory, reason, and time: The step-logic approach. In Philosophy and AI: Essays at the Interface, R. Cummins and J. Pollock (Eds.). MIT Press, Cambridge, MA, 79--103.
[17]
J. J. Elgot-Drapkin and D. Perlis. 1990. Reasoning situated in time I: Basic concept. Journal of Experimental and Theoretical Artificial Intelligence 2, 1, 75--98.
[18]
E. Fermé and S. O. Hansson. 2011. AGM 25 years: Twenty-five years of research in belief change. Journal of Philosophical Logic 40, 295--331.
[19]
P. Gärdenfors. 1988. Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press/Bradford Books, Cambridge, MA.
[20]
P. Gärdenfors (Ed.). 1992. Belief Revision. Cambridge University Press.
[21]
M. Gelfond and Y. Kahl. 2014. Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer Set Programming Approach. Cambridge University Press.
[22]
M. Gelfond and V. Lifschitz. 1988. The stable model semantics for logic programming. In Proceeding of the 5th International Logic Programming Conference. 1070--1080.
[23]
M. Gelfond and V. Lifschitz. 1991. Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 3--4, 365--386.
[24]
M. L. Ginsberg (Ed.). 1987. Readings in Nonmonotonic Reasoning. Morgan Kaufmann, Los Altos, CA.
[25]
A. G. Hamilton. 1988. Logic for Mathematicians, Revised Edition. Cambridge University Press.
[26]
S. O. Hansson. 1999. A Textbook of Belief Dynamics: Theory Change and Database Updating. Kluwer Academic Publishers, Dordercht, Netherlands.
[27]
P. J. Hayes. 1980. The logic of frames. In Frame Conceptions and Text Understanding, D. Metzing (Ed.). Walter de Gruyter, Berlin, Germany.
[28]
G. W. F. Hegel. 1910. Phenomenology of Mind. Trans. J. B. Baillie. Clarendon Press, Oxford. trans. J. B. Baillie, 2nd ed. 1931.
[29]
I. Kant. 1935. Critique of Pure Reason. Trans. N. K. Smith. Macmillan, London, England.
[30]
S. Kraus, D. Lehmann, and M. Magidor. 1990. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167--207.
[31]
D. Lehmann. 1995. Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence 15, 1, 61--82.
[32]
D. Lehmann and M. Magidor. 1992. What does a conditional knowledge base entail? Artificial Intelligence 55, 1--60.
[33]
J. A. Leite, J. J. Alferes, and L. M. Pereira. 2001. Multi-dimensional dynamic knowledge representation. In Logic Programming and Nonmonotonic Reasoning. Springer, 365--378.
[34]
F. Lin and R. Reiter. 1994. Forget it! In Proceedings of the AAAI Fall Symposium on Relevance. 154--159.
[35]
F. Martin. 2001. Robotic Explorations: A Hands-On Introduction to Engineering. Prentice Hall.
[36]
J. McCarthy. 1980. Circumscription—a form of nonmonotonic reasoning. Artificial Intelligence 13, 27--39. Reprinted in {Ginsberg 1987, pp. 145--152}.
[37]
J. McCarthy and P. Hayes. 1969. Some philosophical problems from the standpoint of artificial intelligence. In Machine Intelligence 4, 463--502. Reprinted in {Ginsberg 1987}, pp. 26--45, and in: V. Lifschitz, ed., Formalizing Common Sense: Papers by John McCarthy, Ablex, Norwood, NJ, 1990, pp. 21--63.
[38]
D. McDermott and J. Doyle. 1980. Non-monotonic logic--I. Artificial Intelligence 13, 41--72. Reprinted in {Ginsberg 1987}, pp. 111--126.
[39]
E. Mendelson. 1987. Introduction to Mathematical Logic, Third Edition. Chapman and Hall.
[40]
M. J. Miller. 1993. A View of One’s Past and Other Aspects of Reasoned Change in Belief. Ph.D. Dissertation. Department of Computer Science, University of Maryland, College Park.
[41]
M. Minsky. 1975. A framework for representing knowledge. In The Psychology of Computer Vision, P. Winston (Ed.). McGraw-Hill, New York, 211--277. A condensed version has appeared in D. Metzing (Ed.). 1980. Frame Conceptions and Text Understanding, Walter de Gruyter, Berlin, Germany, 1--25.
[42]
D. Perlis, J. J. Elgot-Drapkin, and M. Miller. 1991. Stop the world!—I want to think! International Journal of Intelligence Systems 6, 443--456.
[43]
R. Reiter. 1980. A logic for default reasoning. Artificial Intelligence 13, 1--2, 81--132. Reprinted in {Ginsberg 1987}, pp. 68--93.
[44]
D. G. Schwartz. 1997. Dynamic reasoning with qualified syllogisms. Artificial Intelligence 93, 103--167.
[45]
D. G. Schwartz. 2010. Formal specifications for a Document Management Assistant. In Innovations in Computing Sciences and Software Engineering, K. Elleithy (Ed.). Springer, 111--116.
[46]
J. Šefránek. 2006. Rethinking semantics of dynamic logic programming. In Proceedings of the International Workshop on Non-Monotonic Reasoning.
[47]
J. R. Shoenfield. 1967. Mathematical Logic. Association for Symbolic Logic.
[48]
Y. Shoham. 1986. Chronological ignorance: Time, nonmonotonicity, necessity, and causal theories. In Proceedings of the American Association for Artificial Intelligence (AAAI’86). 389--393.
[49]
Y. Shoham. 1988. Reasoning about Change: Time and Causation from the Standpoint of Artificial Intelligence. MIT Press, Cambridge, MA.
[50]
Y. Shoham. 1993. Agent-oriented programming. Artificial Intelligence 60, 51--92.
[51]
B. Smith and G. Kelleher (Eds.). 1988. Reason Maintenance Systems and Their Applications. Ellis Horwood, Chichester, England.
[52]
W. Spohn. 1988. Ordinal conditional functions: A dynamic theory of epistemic states. In Causation in Decision, Belief Change, and Statistics, Proceedings of the Irvine Conference on Probability and Causation, Volume II, W. L. Harper and B. Skyrms (Eds.). Kluwer, 105--134.
[53]
L. A. Stein. 1992. Resolving ambiguity in nonmonotonic inheritance hierarchies. Artificial Intelligence 55, 2-3, 259--310.
[54]
D. Touretzky. 1984. Implicit ordering of defaults in inheritance systems. In Proceedings of the 5th National Conference on Artificial Intelligence (AAAI’84). 322--325. Reprinted in {Ginsberg 1987}, pp. 106--109, and in G. Shafer and J. Pearl, eds., Readings in Uncertain Reasoning, Morgan Kaufmann, San Mateo, CA, 1990, pp. 668--671.
[55]
D. S. Touretzky, J. E. Horty, and R. H. Thomason. 1987. A clash of intuitions: The current state of nonmonotonic multiple inheritance systems. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’87). 476--482.
[56]
A. Turing. 1936. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series 2 42, 230--265.
[57]
S. Ustymenko. 2008. Multiagent Dynamic Reasoning about Belief and Trust. Ph.D. Dissertation. Department of Computer Science, Florida State University, Tallahassee, FL.
[58]
S. Ustymenko and D. G. Schwartz. 2008a. Architecture for belief revision in multi-agent intelligent systems. In Innovations and Advanced Techniques in Systems, Computing Sciences, and Software Engineering, K. Elleithy (Ed.). Springer-Verlag, 465--470.
[59]
S. Ustymenko and D. G. Schwartz. 2008b. Dynamic agent-oriented reasoning about belief and trust. Multiagent and Grid Systems 4, 2, 335--346.
[60]
S. Ustymenko and D. G. Schwartz. 2010a. Algorithms for maintaining a consistent knowledge base in distributed multiagent environments. In Innovations in Computing Sciences and Software Engineering, K. Elleithy (Ed.). Springer-Verlag, 105--110.
[61]
S. Ustymenko and D. G. Schwartz. 2010b. Dynamic web of trust in an agent community. In Semantic Web: Standards, Tools and Ontologies. Nova Science Publishers, Hauppauge NY, 169--194.
[62]
I. J. Varzinczak. 2010. On action theory change. Journal of Artificial Intelligence Research 37, 189--246.

Cited By

View all
  • (2018)Threat Intelligence ComputingProceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security10.1145/3243734.3243829(1883-1898)Online publication date: 15-Oct-2018

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 16, Issue 4
November 2015
273 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/2802139
  • Editor:
  • Orna Kupferman
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 November 2015
Accepted: 01 June 2015
Revised: 01 June 2015
Received: 01 July 2013
Published in TOCL Volume 16, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Nonmonotonic reasoning
  2. belief revision
  3. dynamic reasoning

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 31 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Threat Intelligence ComputingProceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security10.1145/3243734.3243829(1883-1898)Online publication date: 15-Oct-2018

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media