Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Statistical Abstraction for Multi-scale Spatio-temporal Systems

Published: 10 December 2019 Publication History

Abstract

Modelling spatio-temporal systems exhibiting multi-scale behaviour is a powerful tool in many branches of science, yet it still presents significant challenges. Here, we consider a general two-layer (agent-environment) modelling framework, where spatially distributed agents behave according to external inputs and internal computation; this behaviour may include influencing their immediate environment, creating a medium over which agent-agent interaction signals can be transmitted. We propose a novel simulation strategy based on a statistical abstraction of the agent layer, which is typically the most detailed component of the model and can incur significant computational cost in simulation. The abstraction makes use of Gaussian Processes, a powerful class of non-parametric regression techniques from Bayesian Machine Learning, to estimate the agent’s behaviour given the environmental input. We show on two biological case studies how this technique can be used to speed up simulations and provide further insights into model behaviour.

References

[1]
Howard C. Berg, Douglas A. Brown et al. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239, 5374 (1972), 500--504.
[2]
Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning. Springer, New York.
[3]
Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. 2015. Efficient stochastic simulation of systems with multiple time scales via statistical abstraction. In Computational Methods in Systems Biology. Springer, Cham, 40--51.
[4]
Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. 2016. Smoothed model checking for uncertain continuous-time Markov chains. Info. Comput. 247 (2016), 235--253.
[5]
Leonard Bosgraaf and Peter J. M. Van Haastert. 2009. The ordered extension of pseudopodia by amoeboid cells in the absence of external cues. PLOS One 4, 4 (Apr. 2009), e5253.
[6]
Eugene Butkov. 1995. Mathematical Physics (32. print ed.). Addison-Wesley, Reading, MA. OCLC: 258506311.
[7]
Daniel S. Calovi, Leonardo G. Brunnet, and Rita M. C. de Almeida. 2010. cAMP diffusion in Dictyostelium discoideum: A Green’s function method. Phys. Rev. E 82, 1 (2010), 011909.
[8]
I. M. Chakravarty, R. G. Laha, and J. D. Roy. 1967. Handbook of Methods of Applied Statistics. McGraw-Hill, New York, NY.
[9]
Federica Ciocchetta and Jane Hillston. 2009. Bio-PEPA: A framework for the modelling and analysis of biological systems. Theoret. Comput. Sci. 410, 33--34 (Aug. 2009), 3065--3084.
[10]
Joseph O. Dada and Pedro Mendes. 2011. Multi-scale modelling and simulation in systems biology. Integr. Biol. 3, 2 (2011), 86.
[11]
Zahra Eidi. 2017. Discrete modeling of amoeboid locomotion and chemotaxis in Dictyostelium discoideum by tracking pseudopodium growth direction. Sci. Rep. 7, 1 (Oct. 2017), 12675.
[12]
Nicholas W. Frankel, William Pontius, Yann S. Dufour, Junjiajia Long, Luis Hernandez-Nunez, and Thierry Emonet. 2014. Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 3 (2014), e03526.
[13]
David Gilbert, Monika Heiner, Koichi Takahashi, and Adelinde M. Uhrmacher. 2015. Multiscale Spatial Computational Systems Biology (Dagstuhl Seminar 14481). Dagstuhl Reports 4, 11 (2015), 138--226.
[14]
Daniel T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 25 (1977), 2340--2361.
[15]
Daniel T. Gillespie. 2000. The chemical Langevin equation. J. Chem. Phys. 113, 1 (July 2000), 297--306.
[16]
John Goutsias. 2005. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems. J. Chem. Phys. 122, 18 (2005), 184102.
[17]
Peter J. M. Van Haastert. 2010. Chemotaxis: Insights from the extending pseudopod. J. Cell. Sci. 123, 18 (Sept. 2010), 3031--3037.
[18]
Peter J. M. Van Haastert and Leonard Bosgraaf. 2009. Food searching strategy of amoeboid cells by starvation induced run length extension. PLOS One 4, 8 (Aug. 2009), e6814.
[19]
Clinton H. Hansen, Robert Endres, and Ned Wingreen. 2008. Chemotaxis in Escherichia coli: A molecular model for robust precise adaptation. PLOS Comp. Biol. 4, 1 (2008), e1.
[20]
Eric L. Haseltine and James B. Rawlings. 2002. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117, 15 (2002), 6959--6969.
[21]
N. G. van Kampen. 1961. A power series expansion of the master equation. Can. J. Phys. 39, 4 (Apr. 1961), 551--567.
[22]
T. G. Kurtz. 1971. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8, 2 (1971), 344--356.
[23]
Liang Li, Edward C. Cox, and Henrik Flyvbjerg. 2011. “Dicty dynamics”: Dictyostelium motility as persistent random motion. Phys. Biol. 8, 4 (2011), 046006.
[24]
Liang Li, Simon F. Nørrelykke, and Edward C. Cox. 2008. Persistent cell motion in the absence of external signals: A search strategy for eukaryotic cells. PLOS One 3, 5 (May 2008), e2093.
[25]
Jean-Louis Martiel and Albert Goldbeter. 1987. A model based on receptor desensitization for cyclic AMP signaling in dictyostelium cells. Biophys. J. 52, 5 (Nov. 1987), 807--828.
[26]
Michalis Michaelides, Jane Hillston, and Guido Sanguinetti. 2017. Statistical abstraction for multi-scale spatio-temporal systems. In Quantitative Evaluation of Systems, Nathalie Bertrand and Luca Bortolussi (Eds.). Springer International Publishing, 243--258.
[27]
Michalis Michaelides, Dimitrios Milios, Jane Hillston, and Guido Sanguinetti. 2016. Property-driven state-space coarsening for continuous time Markov chains. In Quantitative Evaluation of Systems. Springer, Cham, 3--18.
[28]
J. R. Norris. 1998. Markov Chains. Cambridge University Press.
[29]
Sucheendra K. Palaniappan, Francois Bertaux, Matthieu Pichene, Eric Fabre, Gregory Batt, and Blaise Genest. 2017. Abstracting the dynamics of biological pathways using information theory: A case study of apoptosis pathway. Bioinformatics 33, 13 (July 2017), 1980--1986.
[30]
Christopher V. Rao and Adam P. Arkin. 2003. Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys. 118, 11 (2003), 4999--5010.
[31]
Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.
[32]
Anthony D. J. Robertson and James F. Grutsch. 1981. Aggregation in Dictyostelium discoideum. Cell 24, 3 (June 1981), 603--611.
[33]
David Schnoerr, Guido Sanguinetti, and Ramon Grima. 2017. Approximation and inference methods for stochastic biochemical kineticsâa tutorial review. J. Phys. A: Math. Theor. 50, 9 (2017), 093001.
[34]
Michael W. Sneddon, William Pontius, and Thierry Emonet. 2012. Stochastic coordination of multiple actuators reduces latency and improves chemotactic response in bacteria. Proc. Natl. Acad. Sci. U.S.A. 109, 3 (2012), 805--810.
[35]
Edward Snelson and Zoubin Ghahramani. 2006. Sparse Gaussian processes using pseudo-inputs. In Advances in Neural Information Processing Systems 18, Y. Weiss, P. B. Schoelkopf, and J. C. Platt (Eds.). MIT Press, 1257--1264.
[36]
Victor Sourjik and Howard C. Berg. 2004. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 6981 (2004), 437--441.
[37]
Victor Sourjik and Ned S. Wingreen. 2012. Responding to chemical gradients: Bacterial chemotaxis. Curr. Opin. Cell Biol. 24, 2 (2012), 262--268.
[38]
Nikita Vladimirov, Dirk Lebiedz, and Victor Sourjik. 2010. Predicted Auxiliary Navigation Mechanism of Peritrichously Flagellated Chemotactic Bacteria. PLOS Comp. Biol. 6, 3 (2010), e1000717.
[39]
Nikita Vladimirov, Linda Lÿvdok, Dirk Lebiedz, and Victor Sourjik. 2008. Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLOS Comp. Biol. 4, 12 (2008), e1000242.

Cited By

View all
  • (2020)Stationary Distributions and Metastable Behaviour for Self-regulating Proteins with General Lifetime DistributionsComputational Methods in Systems Biology10.1007/978-3-030-60327-4_2(27-43)Online publication date: 23-Sep-2020
  • (2019)Introduction to the Special Issue on Qest 2017ACM Transactions on Modeling and Computer Simulation10.1145/336378429:4(1-2)Online publication date: 18-Nov-2019

Index Terms

  1. Statistical Abstraction for Multi-scale Spatio-temporal Systems

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Modeling and Computer Simulation
      ACM Transactions on Modeling and Computer Simulation  Volume 29, Issue 4
      Special Issue On Qest 2017
      October 2019
      188 pages
      ISSN:1049-3301
      EISSN:1558-1195
      DOI:10.1145/3372492
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication Notes

      Badge change: Article originally badged under Version 1.0 guidelines https://www.acm.org/publications/policies/artifact-review-badging

      Publication History

      Published: 10 December 2019
      Accepted: 01 March 2019
      Revised: 01 February 2019
      Received: 01 January 2018
      Published in TOMACS Volume 29, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Badges

      Author Tags

      1. Multi-scale systems
      2. agent-based
      3. coarsening
      4. spatio-temporal
      5. statistical abstraction

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)10
      • Downloads (Last 6 weeks)2
      Reflects downloads up to 03 Oct 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Stationary Distributions and Metastable Behaviour for Self-regulating Proteins with General Lifetime DistributionsComputational Methods in Systems Biology10.1007/978-3-030-60327-4_2(27-43)Online publication date: 23-Sep-2020
      • (2019)Introduction to the Special Issue on Qest 2017ACM Transactions on Modeling and Computer Simulation10.1145/336378429:4(1-2)Online publication date: 18-Nov-2019

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media