Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/3108905.3108923acmotherconferencesArticle/Chapter ViewAbstractPublication PagesspringsimConference Proceedingsconference-collections
research-article

Formal specification of hypotheses for assisting computer simulation studies

Published: 23 April 2017 Publication History

Abstract

The aim of computer simulation studies is to answer research questions by means of experiments. For providing reliable evidence, the procedure of the study needs to be aligned with the question and the steps of the study need to be adjusted and combined accordingly. Supporting this process is challenging as the identification, customization, and combination of adequate tools and techniques for the systematic design of simulation experiments with respect to a hypothesis is not trivial. Hence, for providing computer-aided assistance, a language for the specification of hypotheses with respect to the credible and reproducible testing of research questions in computer simulation is needed. In this paper, we propose an approach for formally specifying hypotheses that allows for automated hypothesis testing. Based on specified hypotheses, we demonstrate the assistance of simulation studies in terms of model parametrization and analysis of results with respect to the statistically sound evaluation of hypotheses.

References

[1]
Bajpai, N. 2009. Business Statistics. Pearson.
[2]
Banks, J., J. Carson, B. Nelson, and D. Nicol. 2013. Discrete-Event System Simulation, Volume 5. Pearson.
[3]
Berndt, J. O. 2013. "Self-organizing Logistics Process Control: An Agent-based Approach". In Agents and Artificial Intelligence, pp. 397--412. Springer.
[4]
Better, M., F. Glover, and M. Laguna. 2007. "Advances in analytics: Integrating dynamic data mining with simulation optimization". IBM Journal of Research and Development vol. 51 (3.4), pp. 477--487.
[5]
Bley, H., C. Franke, C. Wuttke, and A. Gross. 2000. "Automation of simulation studies". In Proceedings of the 2nd CIRP International Seminar on Intelligent Computation in Manufacturing, pp. 89--94. Citeseer.
[6]
Bogon, T., I. J. Timm, U. Jessen, M. Schmitz, S. Wenzel, A. D. Lattner, D. Paraskevopoulos, and S. Spieckermann. 2012. "Towards assisted input and output data analysis in manufacturing simulation: the EDASim approach". In Proceedings of the Winter Simulation Conference, pp. 257. Winter Simulation Conference.
[7]
Buchanan, B. G., and E. A. Feigenbaum. 1978. "DENDRAL and Meta-DENDRAL: Their Applications Dimension.". Technical report, DTIC Document.
[8]
Croucher, A. 2011. "PyTOUGH: A Python scripting library for automating TOUGH2 simulations". In Proceedings of the New Zealand Geothermal Workshop, Volume 21, pp. 1--6.
[9]
Daum, T., and R. G. Sargent. 2001. "Experimental frames in a modern modeling and simulation system". Iie Transactions vol. 33 (3), pp. 181--192.
[10]
Degroot, A. 1969. Methodology: Foundations of Inference and Research in the Behavioral Sciences. Psychological Studies. Walter de Gruyter GmbH & Company KG.
[11]
Diallo, S. Y., J. J. Padilla, I. Bozkurt, and A. Tolk. 2013. "Modeling and simulation as a theory building paradigm". In Ontology, Epistemology, and Teleology for M&S, pp. 193--206. Springer.
[12]
Ewing, G., K. Pawlikowski, and D. McNickle. 1999. Akaroa-2: Exploiting network computing by distributing stochastic simulation. SCSI Press.
[13]
Freedman, D., R. Pisani, and R. Purves. 2007. Statistics. W.W. Norton & Company.
[14]
Ganter, B., and S. O. Kuznetsov. 2000. "Formalizing hypotheses with concepts". In International Conference on Conceptual Structures, pp. 342--356. Springer.
[15]
Gilbert, N., and K. Troitzsch. 2005. Simulation for the social scientist. McGraw-Hill Education (UK).
[16]
Gonçalves, B., and F. Porto. 2015. "Managing scientific hypotheses as data with support for predictive analytics". Computing in Science & Engineering vol. 17 (5), pp. 35--43.
[17]
Griffin, T. G., S. Petrovic, A. Poplawski, and B. Premore. 2002. SOS: Scripts for Organizing 'Speriments. SSF Research Network. http://www.ssfnet.org/sos/, accessed Jan. 2017.
[18]
Hanneman, R., A. Kposowa, and M. Riddle. 2012. Basic Statistics for Social Research. Wiley.
[19]
Himmelspach, J., and A. M. Uhrmacher. 2007. "Plug'n simulate". In 40th Annual Simulation Symposium, pp. 137--143. IEEE Computer Society.
[20]
Hoad, K., S. Robinson, and R. Davies. 2010. "Automated selection of the number of replications for a discrete-event simulation". Journal of the Operational Research Society vol. 61 (11), pp. 1632--1644.
[21]
Hudert, S., C. Niemann, and T. Eymann. 2010. "On computer simulation as a component in information systems research". In Design Science Research in Information Systems, pp. 167--179. Springer.
[22]
King, R. D., J. Rowland, S. G. Oliver, M. Young, W. Aubrey, E. Byrne, M. Liakata, M. Markham, P. Pir, L. N. Soldatova et al. 2009. "The automation of science". Science vol. 324 (5923), pp. 85--89.
[23]
Kleijnen, J. P. 2005. "Supply chain simulation tools and techniques: a survey". International Journal of Simulation and Process Modelling vol. 1 (1-2), pp. 82--89.
[24]
Kothari, C. 2004. Research Methodology: Methods and Techniques. New Age International (P) Limited.
[25]
Lattner, A. D., T. Bogon, and I. J. Timm. 2011. "Convergence Classification and Replication Prediction for Simulation Studies". In Int. Conf. Agents and Artificial Intelligence, pp. 255--268. Springer.
[26]
Lattner, A. D., H. Pitsch, I. J. Timm, S. Spieckermann, and S. Wenzel. 2011. "AssistSim--Towards Automation of Simulation Studies in Logistics". SNE vol. 21 (3--4), pp. 119--128.
[27]
Law, A. M. 2014. Simulation modeling and analysis, Volume 5. McGraw-Hill New York.
[28]
Lee, D.-E., and D. Arditi. 2006. "Automated statistical analysis in stochastic project scheduling simulation". Journal of Construction Engineering and Management vol. 132 (3), pp. 268--277.
[29]
Millman, E., D. Arora, and S. W. Neville. 2011. "STARS: A framework for statistically rigorous simulation-based network research". In Advanced Information Networking and Applications (WAINA), 2011 IEEE Workshops of International Conference on, pp. 733--739. IEEE.
[30]
Nikolai, C., and G. Madey. 2009. "Tools of the trade: A survey of various agent based modeling platforms". Journal of Artificial Societies and Social Simulation vol. 12 (2), pp. 2.
[31]
Ören, T. I., B. P. Zeigler, and M. S. Elzas. 1984. Simulation and Model-based Methodologies: An Integrative View, Volume 10. NATO ASI Series F: Computer and System Sciences.
[32]
Perrone, L. F., C. S. Main, and B. C. Ward. 2012. "Safe: simulation automation framework for experiments". In Proceedings of the Winter Simulation Conference, pp. 249. Winter Simulation Conference.
[33]
Recker, J. 2013. Information Systems Research as a Science, pp. 11--21. Springer.
[34]
Robinson, S. 2005. "Automated analysis of simulation output data". In Proceedings of the Winter Simulation Conference, pp. 763--770. IEEE.
[35]
Schreiber, G. 2008. "Knowledge Engineering". In Handbook of Knowledge Representation, edited by F. van Harmelen, V. Lifschitz, and B. Porter, Volume 1 of Found. of Art. Intelligence, pp. 929--946. Elsevier.
[36]
Schruben, L., and D. Singham. 2011. "Agent based simulation output analysis". In Proceedings of the Winter Simulation Conference, pp. 540--548. IEEE.
[37]
Simon, R. 1989. "Optimal two-stage designs for phase II clinical trials". Controlled clinical trials vol. 10 (1), pp. 1--10.
[38]
Soldatova, L. N., and R. D. King. 2006. "An ontology of scientific experiments". Journal of the Royal Society Interface vol. 3 (11), pp. 795--803.
[39]
Steiger, N. M., and J. R. Wilson. 2002. "An improved batch means procedure for simulation output analysis". Management Science vol. 48 (12), pp. 1569--1586.
[40]
Taylor, I. J., E. Deelman, D. B. Gannon, and M. Shields. 2014. Workflows for e-Science: scientific workflows for grids. Springer Publishing Company, Incorporated.
[41]
Teran-Somohano, A., O. Dayibaş, L. Yilmaz, and A. Smith. 2014. "Toward a model-driven engineering framework for reproducible simulation experiment lifecycle management". In Proceedings of the Winter Simulation Conference, pp. 2726--2737. IEEE.
[42]
Teran-Somohano, A., A. E. Smith, J. Ledet, L. Yilmaz, and H. Oğuztüzün. 2015. "A model-driven engineering approach to simulation experiment design and execution". In Proceedings of the Winter Simulation Conference, pp. 2632--2643. IEEE.
[43]
Tietjen, G. 2012. A Topical Dictionary of Statistics. Springer US.
[44]
Timm, I. J., and F. Lorig. 2015. "A survey on methodological aspects of computer simulation as research technique". In Proceedings of the Winter Simulation Conference, pp. 2704--2715. IEEE.
[45]
Tran, N., C. Baral, V. J. Nagaraj, and L. Joshi. 2005. "Knowledge-based integrative framework for hypothesis formation in biochemical networks". In Data Integration in the Life Sciences, pp. 121--136. Springer.
[46]
Triola, M. 2013. Elementary Statistics. Pearson Education, Limited.
[47]
Van Zundert, J., S. Antonijevic, A. Beaulieu, K. van Dalen-Oskam, D. Zeldenrust, and T. L. Andrews. 2012. "Cultures of Formalisation: Towards an Encounter between Humanities and Computing". In Understanding digital humanities, pp. 279--294. Springer.
[48]
Verburg, J. M., C. Grassberger, S. Dowdell, J. Schuemann, J. Seco, and H. Paganetti. 2016. "Automated Monte Carlo Simulation of Proton Therapy Treatment Plans". Technology in Cancer Research & Treatment vol. 15 (6), pp. NP35--NP46.
[49]
Wagner, T., A. Gellrich, C. Schwenke, K. Kabitzsch, and G. Schneider. 2014. "Automated planning and creation of simulation experiments with a domain specific ontology for semiconductor manufacturing AMHS". In Proceedings of the Winter Simulation Conference, pp. 2628--2639. IEEE Press.
[50]
Yilmaz, L., S. Chakladar, and K. Doud. 2016. "The Goal-Hypothesis-Experiment framework: A generative cognitive domain architecture for simulation experiment management". In Winter Simulation Conference (WSC), 2016, pp. 1001--1012. IEEE.
[51]
Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of modeling and simulation: integrating discrete event and continuous complex dynamic systems. Academic press.

Cited By

View all
  • (2024)Context, Composition, Automation, and Communication: The C2AC Roadmap for Modeling and SimulationACM Transactions on Modeling and Computer Simulation10.1145/367322634:4(1-51)Online publication date: 13-Aug-2024
  • (2018)Social contagion of fertilityProceedings of the 2018 Winter Simulation Conference10.5555/3320516.3320638(953-964)Online publication date: 9-Dec-2018
  • (2017)HYpothesis-driven experiment design in computer simulation studiesProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242290(1-12)Online publication date: 3-Dec-2017

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
TMS/DEVS '17: Proceedings of the Symposium on Theory of Modeling & Simulation
April 2017
234 pages

In-Cooperation

Publisher

Society for Computer Simulation International

San Diego, CA, United States

Publication History

Published: 23 April 2017

Check for updates

Author Tags

  1. assistance system
  2. formal specification
  3. hypothesis testing
  4. parametrization

Qualifiers

  • Research-article

Conference

SpringSim '17
SpringSim '17: Spring Simulation Multi-Conference
April 23 - 26, 2017
Virginia, Virginia Beach

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Context, Composition, Automation, and Communication: The C2AC Roadmap for Modeling and SimulationACM Transactions on Modeling and Computer Simulation10.1145/367322634:4(1-51)Online publication date: 13-Aug-2024
  • (2018)Social contagion of fertilityProceedings of the 2018 Winter Simulation Conference10.5555/3320516.3320638(953-964)Online publication date: 9-Dec-2018
  • (2017)HYpothesis-driven experiment design in computer simulation studiesProceedings of the 2017 Winter Simulation Conference10.5555/3242181.3242290(1-12)Online publication date: 3-Dec-2017

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media