Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Point–Based Registration Assuming Affine Motion

  • Conference paper
Algebraic Frames for the Perception-Action Cycle (AFPAC 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1888))

  • 413 Accesses

Abstract

Registration is a fundamental task in image processing. Its purpose is to find a geometrical transformation that relates the points of an image to their corresponding points of another image. The determination of the optimal transformation depends on the types of variations between the images. In this paper we propose a robust method based on two sets of points representing the images. One-to-one correspondence is assumed between these two sets. Our approach finds global affine transformation between the sets of points and can be used in any arbitrary dimension k  ≥ 1. A sufficient existence condition for a unique solution is given and proven. Our method can be used to solve various registration problems emerged in numerous fields, including medical image processing, remotely sensed data processing, and computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least squares fitting of two 3-D point sets. IEEE Trans. Pattern Analysis and Machine Intelligence 9, 698–703 (1987)

    Article  Google Scholar 

  2. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspondence and chamfer matching: two new techniques for image matching. In: Proc. 5th Int.Joint Conf. Artificial Intelligence, pp. 659–663 (1977)

    Google Scholar 

  3. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans. Pattern Analysis and Machine Intelligence 14, 239–256 (1992)

    Article  Google Scholar 

  4. Bookstein, F.L.: Principal warps: thin–plate splines and the decomposition of deformations. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 567–585 (1989)

    Article  MATH  Google Scholar 

  5. Borgefors, G.: An improved version of the chamfer matching algorithm. In: Proc. 7th Int. Conf. on Pattern Recognition, pp. 1175–1177 (1994)

    Google Scholar 

  6. Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24, 325–376 (1992)

    Article  Google Scholar 

  7. Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid–body point-based registration. IEEE Trans. on Medical Imaging 17, 694–702 (1998)

    Article  Google Scholar 

  8. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics—Principles and Practice. Addison–Wesley Publishing Company, Reading (1991)

    Google Scholar 

  9. Fornefett, M., Rohr, K., Stiehl, H.S.: Radial basis functions with compact support for elastic registration of medical images. In: Proc. Int. Workshop on Biomedical Image Registration, pp. 173–185 (1999)

    Google Scholar 

  10. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2, 1–36 (1998)

    Article  Google Scholar 

  11. Maurer, C.R., McCrory, J.J., Fitzpatrick, J.M.: Estimation of accuracy in localizing externally attached markers in multimodal volume head images. In: Medical Imaging: Image Processing, Proc. SPIE 1898, pp. 43–54 (1993)

    Google Scholar 

  12. Maurer, C.R., Fitzpatrick, J.M., Wang, M.Y., Galloway, R.L., Maciunas, R.J., Allen, G.S.: Registration of head volume images using implantable fiducial markers. IEEE Trans.on Medical Imaging 16, 447–462 (1997)

    Article  Google Scholar 

  13. Pelizzari, C.A., Chen, G.T.Y., Spelbring, D.R., Weichselbaum, R.R., Chen, C.T.: Accurate three dimensional registration of CT, PET and/or MR images of the brain. Journal of Computer Assisted Tomography 13, 20–26 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tanács, A., Czédli, G., Palágyi, K., Kuba, A. (2000). Point–Based Registration Assuming Affine Motion. In: Sommer, G., Zeevi, Y.Y. (eds) Algebraic Frames for the Perception-Action Cycle. AFPAC 2000. Lecture Notes in Computer Science, vol 1888. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722492_26

Download citation

  • DOI: https://doi.org/10.1007/10722492_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41013-3

  • Online ISBN: 978-3-540-45260-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics