Abstract
In this paper, we present a study of the use of an artificial immune system (CLONALG) for solving constrained global optimization problems. As part of this study, we evaluate the performance of the algorithm both with binary encoding and with real-numbers encoding. Additionally, we also evaluate the impact of the mutation operator in the performance of the approach by comparing Cauchy and Gaussian mutations. Finally, we propose a new mutation operator which significantly improves the performance of CLONALG in constrained optimization.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Balicki, J.: Multi-criterion evolutionary algorithm with model of the immune system to handle constraints for task assignments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 394–399. Springer, Heidelberg (2004)
Coello, C.A.C., Cruz-Cortés, N.: Hybridizing a genetic algorithm with an artificial immune system for global optimization. Engineering Optimization 36(5), 607–634 (2004)
Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill, London (1999)
de Castro, L.N., Timmis, J.: An artificial immune network for multimodal function optimization. In: Proceedings of the special sessions on artificial immune systems in the 2002 Congress on Evolutionary Computation, 2002 IEEE World Congress on Computational Intelligence, Honolulu, Hawaii, May 2002, vol. I, pp. 669–674 (2002)
de Castro, L.N., Timmis, J.: An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. Springer, Heidelberg (2002)
de Castro, L.N., Von Zuben, F.J.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)
Farmani, R., Wright, J.A.: Self-Adaptive Fitness Formulation for Constrained Optimization. IEEE Transactions on Evolutionary Computation 7(5), 445–455 (2003)
Hajela, P., Yoo, J.S.: Immune network modelling in design optimization. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 167–183. Mc GrawHill, New York (1999)
Hamida, S.B., Schoenauer, M.: ASCHEA: New results using adaptive segregationsl constraint handling. In: Proceedings of the Congress on Evolutionary Computation 2002 (CEC 2002), Piscataway, New Jersey, vol. 1, pp. 884–889. IEEE Service Center (2002)
Kelsey, J., Timmis, J.: Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 207–218. Springer, Heidelberg (2003)
Koziel, S., Michalewicz, Z.: Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization. Evolutionary Computation 7(1), 19–44 (1999)
Luh, G.C., Chueh, C.H.: Multi-objective optimal designof truss structure with immune algorithm. Computers and Structures 82, 829–844 (2004)
Luh, G.C., Chueh, C.H., Liu, W.W.: MOIA: Multi-Objective Immune Algorithm. Engeneering Optimization 35(2), 143–164 (2003)
Mathias, K.E., Whitley, L.D.: Transforming the search space with Gray coding. In: Schaffer, J.D. (ed.) Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 513–518. IEEE Service Center, Piscataway (1994)
Michalewicz, Z., Schoenauer, M.: Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evolutionary Computation 4(1), 1–32 (1996)
Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionay Computation 4(3), 284–294 (2000)
Smith, A.E., Coit, D.W.: Constraint Handling Techniques—Penalty Functions. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, chapter C 5.2. Oxford University Press, Oxford (1997)
Yao, X., Liu, Y.: Fast evolution strategies. Control and Cybernetics 26(3), 467–496 (1997)
Yoo, J., Hajela, P.: Enhanced GA Based Search Through Immune System Modeling. In: 3rd. World Congress on Structural and Multidisciplinary Optimization. IEEE Computer Society Press, Los Alamitos (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cruz-Cortés, N., Trejo-Pérez, D., Coello, C.A.C. (2005). Handling Constraints in Global Optimization Using an Artificial Immune System. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds) Artificial Immune Systems. ICARIS 2005. Lecture Notes in Computer Science, vol 3627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536444_18
Download citation
DOI: https://doi.org/10.1007/11536444_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28175-7
Online ISBN: 978-3-540-31875-0
eBook Packages: Computer ScienceComputer Science (R0)