Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Deciding Topological Classes of Deterministic Tree Languages

  • Conference paper
Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

Abstract

It has been proved by Niwiński and Walukiewicz that a deterministic tree language is either Π\(_{\rm 1}^{\rm 1}\)-complete or it is on the level Π\(_{\rm 3}^{\rm 0}\) of the Borel hierarchy, and that it can be decided effectively which of the two takes place. In this paper we show how to decide if the language recognized by a given deterministic tree automaton is on the Π\(_{\rm 2}^{\rm 0}\), the Σ\(^{\rm 0}_{\rm 2}\), or the Σ\(^{\rm 0}_{\rm 3}\) level. Together with the previous results it gives a procedure calculating the exact position of a deterministic tree language in the topological hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bradfield, J.C.: The modal mu-calculus alternation hierarchy is strict. Theoret. Comput. Sci. 195, 133–153 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Browne, A., Clarke, E.M., Jha, S., Long, D.E., Marrero, W.: An improved algorithm for the evaluation of fixpoint expressions. Theoret. Comput. Sci. 178, 237–255 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In: Proc. FoCS 1988, pp. 328–337. IEEE Computer Society Press, Los Alamitos (1988)

    Google Scholar 

  4. Jurdziński, M., Vöge, J.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  6. Kupferman, O., Safra, S., Vardi, M.: Relating Word and Tree Automata. In: 11th IEEE Symp. on Logic in Comput. Sci., pp. 322–332 (1996)

    Google Scholar 

  7. Lenzi, G.: A hierarchy theorem for the mu-calculus. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 87–109. Springer, Heidelberg (1996)

    Google Scholar 

  8. Mostowski, A.W.: Hierarchies of weak automata and weak monadic formulas. Theoret. Comput. Sci. 83, 323–335 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Niwiński, D.: On fixed point clones. In: Kott, L. (ed.) ICALP 1986. LNCS, vol. 226, pp. 464–473. Springer, Heidelberg (1986)

    Google Scholar 

  10. Niwiński, D., Walukiewicz, I.: Relating hierarchies of word and tree automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 320–331. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theoret. Comput. Sci. 303, 215–231 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Niwiński, D., Walukiewicz, I.: Deciding nondeterministic hierarchy of deterministic tree automata. In: Proc. WoLLiC 2004(2004) (to appear in Electronic Notes in Theoretical Computer Science)

    Google Scholar 

  13. Otto, M.: Eliminating recursion in μ-calculus. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 531–540. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Amer. Soc. 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  15. Seidl, H.: Fast and simple nested fixpoints. Information Processing Letters 59, 303–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Skurczyński, J.: The Borel hierarchy is infinite in the class of regular sets of trees. Theoret. Comput. Sci. 112, 413–418 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, Heidelberg (1997)

    Google Scholar 

  18. Urbański, T.F.: On deciding if deterministic Rabin language is in Büchi class. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 663–674. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Wagner, K.: Eine topologische Charakterisierung einiger Klassen regulärer Folgenmengen. J. Inf. Process. Cybern. EIK 13, 473–487 (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murlak, F. (2005). On Deciding Topological Classes of Deterministic Tree Languages. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_30

Download citation

  • DOI: https://doi.org/10.1007/11538363_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics