Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Invariance of Function Complexity Under Primitive Recursive Functions

  • Conference paper
Genetic Programming (EuroGP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3905))

Included in the following conference series:

  • 929 Accesses

Abstract

Genetic Programming (GP) [1] often uses a tree form of a graph to represent solutions. An extension to this representation, Automatically Defined Functions (ADFs) [1] is to allow the ability to express modules. In [2] we proved that the complexity of a function is independent of the primitive set (function set and terminal set) if the representation has the ability to express modules. This is essentially due to the fact that if a representation can express modules, then it can effectively define its own primitives at a constant cost. This is reminiscent of the result that the complexity of a bit string is independent of the choice of Universal Turing Machine (UTM) (within an additive constant) [3], the constant depending on the UTM but not on the function.

The representations typically used in GP are not capable of expressing recursion, however a few researchers have introduced recursion into their representations. These representations are then capable of expressing a wider classes of functions, for example the primitive recursive functions (PRFs). We prove that given two representations which express the PRFs (and only the PRFs), the complexity of a function with respect to either of these representations is invariant within an additive constant. This is in the same vein as the proof of the invariants of Kolmogorov complexity [3] and the proof in [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction. In: On the Automatic Evolution of Computer Programs and its Applications, dpunkt.verlag, Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  2. Woodward, J.R.: Modularity in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, Springer, Heidelberg (2003)

    Google Scholar 

  3. Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  4. Grnwald, P.D., Myung, I.J., Pitt, M.A.: Advances in Minimum Description Length Theory and Applications. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  6. Cramer, N.L.: A representation for the adaptive generation of simple programs. In: International Conference on Genetic Algorithms and Their Applications, pp. 183–187 (1985)

    Google Scholar 

  7. Brave, S.: Evolving recursive programs for tree search. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming, vol. 2, pp. 203–220. MIT Press, Cambridge (1996)

    Google Scholar 

  8. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  9. Yu, T.: Hierachical processing for evolving recursive and modular programs using higher order functions and lambda abstractions. Genetic Programming and Evolvable Machines 2(4), 345–380 (2001)

    Article  MATH  Google Scholar 

  10. Spector, L.: Simultaneous evolution of programs and their control structures. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming, vol. 2, pp. 137–154. MIT Press, Cambridge (1996)

    Google Scholar 

  11. Wong, M.L., Leung, K.S.: Evolving recursive functions for the even-parity problem using genetic programming. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming, vol. 2, pp. 221–240. MIT Press, Cambridge (1996)

    Google Scholar 

  12. Huelsbergen, L.: Learning recursive sequences via evolution of machine-language programs. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, pp. 186–194. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  13. Vallejo, E.E., Ramos, F.: Evolving turing machines for biosequence recognition and analysis. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 192–203. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Woodward, J.R.W.: Algorithm Induction,Modularity and Complexity. PhD thesis, The School of Computer Science, The University of Birmingham (2005)

    Google Scholar 

  15. Cutland, N.J.: Computability, An introduction to recursive function theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Teller, A.: Algorithm Evolution with Internal Reinforcement for Signal Understanding. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA (1998)

    Google Scholar 

  17. Hartley Rogers, J.: Theory of recursive functions and effective computability. MIT Press, Cambridge (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woodward, J.R. (2006). Invariance of Function Complexity Under Primitive Recursive Functions. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds) Genetic Programming. EuroGP 2006. Lecture Notes in Computer Science, vol 3905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11729976_28

Download citation

  • DOI: https://doi.org/10.1007/11729976_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33143-8

  • Online ISBN: 978-3-540-33144-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics