Abstract
In recent years one of the most active research areas in applied cryptography is the study of techniques for creating a group signature, a cryptographic primitive that can be used to implement anonymous authentication. Some variants of group signature, such as traceable signature, and authentication with variable anonymity in a trusted computing platform, have also been proposed. In this paper we propose a traceable signature scheme with variable anonymity. Our scheme supports two important properties for a practical anonymous authentication system, i.e., corrupted group member detection and fair tracing, which have unfortunately been neglected in most group signature schemes in the literature. We prove the new scheme is secure in the random oracle model, under the strong RSA assumption and the decisional Diffie-Hellman assumption.
This research is supported in part by NSF award 0208640.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)
Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Advances in Cryptology — Eurocrypto, pp. 480–494 (1997)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient procotols. In: ACM Conference on Computer and Communication Security, pp. 62–73 (1993)
Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM Conference on Computer and Communications Security, pp. 132–145 (2004)
Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)
Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)
Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)
Camenisch, J., Stadler, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)
Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)
Chaum, D., van Heyst, E.: Group signature. In: Advances in Cryptology — Eurocrypt, pp. 390–407 (1992)
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Advances in Cryptology — Crypto, pp. 10–18 (1984)
Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Advances in Cryptology — Crypto, pp. 16–30 (1997)
Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ge, H., Tate, S.R. (2006). Traceable Signature: Better Efficiency and Beyond. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_36
Download citation
DOI: https://doi.org/10.1007/11751595_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34075-1
Online ISBN: 978-3-540-34076-8
eBook Packages: Computer ScienceComputer Science (R0)