Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Traceable Signature: Better Efficiency and Beyond

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3982))

Included in the following conference series:

Abstract

In recent years one of the most active research areas in applied cryptography is the study of techniques for creating a group signature, a cryptographic primitive that can be used to implement anonymous authentication. Some variants of group signature, such as traceable signature, and authentication with variable anonymity in a trusted computing platform, have also been proposed. In this paper we propose a traceable signature scheme with variable anonymity. Our scheme supports two important properties for a practical anonymous authentication system, i.e., corrupted group member detection and fair tracing, which have unfortunately been neglected in most group signature schemes in the literature. We prove the new scheme is secure in the random oracle model, under the strong RSA assumption and the decisional Diffie-Hellman assumption.

This research is supported in part by NSF award 0208640.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Advances in Cryptology — Eurocrypto, pp. 480–494 (1997)

    Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient procotols. In: ACM Conference on Computer and Communication Security, pp. 62–73 (1993)

    Google Scholar 

  4. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM Conference on Computer and Communications Security, pp. 132–145 (2004)

    Google Scholar 

  5. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Camenisch, J., Stadler, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Chaum, D., van Heyst, E.: Group signature. In: Advances in Cryptology — Eurocrypt, pp. 390–407 (1992)

    Google Scholar 

  11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Advances in Cryptology — Crypto, pp. 10–18 (1984)

    Google Scholar 

  12. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  13. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Advances in Cryptology — Crypto, pp. 16–30 (1997)

    Google Scholar 

  14. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. TCG, http://www.trustedcomputinggroup.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ge, H., Tate, S.R. (2006). Traceable Signature: Better Efficiency and Beyond. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_36

Download citation

  • DOI: https://doi.org/10.1007/11751595_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34075-1

  • Online ISBN: 978-3-540-34076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics