Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dynamic Interpolation Search Revisited

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Included in the following conference series:

Abstract

A new dynamic Interpolation Search (IS) data structure is presented that achieves O(loglogn) search time with high probability on unknown continuous or even discrete input distributions with measurable probability of key collisions, including power law and Binomial distributions. No such previous result holds for IS when the probability of key collisions is measurable. Moreover, our data structure exhibits O(1) expected search time with high probability for a wide class of input distributions that contains all those for which o(loglogn) expected search time was previously known.

This work was partially supported by the FET Unit of EC (IST priority – 6th FP), under contracts no. IST-2002-001907 (integrated project DELIS) and no. FP6-021235-2 (project ARRIVAL), and by the Action PYTHAGORAS with matching funds from the European Social Fund and the Greek Ministry of Education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersson, A., Mattson, C.: Dynamic Interpolation Search in o(loglogn) Time. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 15–27. Springer, Heidelberg (1993)

    Google Scholar 

  2. Anderson, A., Thorup, M.: Tight(er) Worst-case Bounds on Dynamic Searching and Priority Queues. In: Proc. 32nd ACM Symposium on Theory of Computing – STOC 2001, pp. 335–342. ACM Press, New York (2000)

    Chapter  Google Scholar 

  3. Burton, F.W., Lewis, G.N.: A robust variation of Interpolation Search. Information Processing Latters 10, 198–201 (1980)

    Article  Google Scholar 

  4. Beame, P., Fich, F.: Optimal bounds for the predecessor problem and related problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demaine, E., Jones, T., Patrascu, M.: Interpolation Search for Non-Independent Data. In: Proc. 15th ACM-SIAM Symp. on Discrete Algorithms – SODA 2004, pp. 522–523 (2004)

    Google Scholar 

  6. Feller, W.: An Introduction to Probability Theory and Its Applications, 2nd edn., vol. II. Wiley, New York (1971)

    MATH  Google Scholar 

  7. Foster, K.E.: A statistically based interpolation binary search. TR, Winthrop College, SC

    Google Scholar 

  8. Frederickson, G.: Implicit Data Structures for the Dictionary Problem. Journal of the ACM 30(1), 80–94 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gonnet, G.: Interpolation and Interpolation-Hash Searching. PhD Thesis. Waterloo: University of Waterloo (1977)

    Google Scholar 

  10. Gonnet, G., Rogers, L., George, J.: An Algorithmic and Complexity Analysis of Interpolation Search. Acta Informatica 13, 39–52 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huddleston, S., Mehlhorn, K.: A new data structure for representing sorted lists. Acta Informatica 17, 157–184 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Itai, A., Konheim, A., Rodeh, M.: A Sparse Table Implementation of Priority Queues. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 417–431. Springer, Heidelberg (1981)

    Google Scholar 

  13. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.: Dynamic Interpolation Search Revisited. Computer Technology Institute Tech. Report TR 2006/04/02 (April 2006)

    Google Scholar 

  15. Manolopoulos, Y., Theodoridis, Y., Tsotras, V.: Advanced Database Indexing. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  16. Mehlhorn, K., Tsakalidis, A.: Dynamic Interpolation Search. Journal of the ACM 40(3), 621–634 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mitzenmacher, M.: A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Mathematics 1(2), 226–251 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Perl, Y., Gabriel, L.: Arithmetic Interpolation Search for Alphabet Tables. IEEE Transactions on Computers 41(4), 493–499 (1992)

    Article  Google Scholar 

  19. Perl, Y., Itai, A., Avni, H.: Interpolation Search – A loglogN Search. Communications of the ACM 21(7), 550–554 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Perl, Y., Reingold, E.M.: Understanding the Complexity of the Interpolation Search. Information Processing Letters 6(6), 219–222 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peterson, W.W.: Addressing for Random Storage. IBM Journal of Research and Development 1(4), 130–146 (1957)

    Article  Google Scholar 

  22. Santorno, N., Sidney, J.B.: Interpolation binary search. Information Processing Letters 20, 179–181 (1985)

    Article  MathSciNet  Google Scholar 

  23. Spencer, J.: Ten Lectures on The Probabilistic Method, 2nd edn. Society for Industrial and Applied Mathematics (1994)

    Google Scholar 

  24. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6, 80–82 (1977)

    Article  MATH  Google Scholar 

  25. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Mathematical Systems Theory 10, 99–127 (1977)

    Article  MATH  Google Scholar 

  26. Willard, D.E.: Searching Unindexed and Nonuniformly Generated Files in loglogN Time. SIAM Journal of Computing 14(4), 1013–1029 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  27. Willard, D.E.: Examining Computational Geometry, Van Emde Boas Trees, and Hashing from the Perspective of the Fusion Tree. SIAM Journal on Computing 29(3), 1030–1049 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yao, A.C., Yao, F.F.: The Complexity of Searching an Ordered Random Table. Proc. 17th IEEE Symp. on Foundations of Computer Science – FOCS 1976 1976, 173–177 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C. (2006). Dynamic Interpolation Search Revisited. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_34

Download citation

  • DOI: https://doi.org/10.1007/11786986_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics