Abstract
The first hyper tableau suffers from blind guessing in instancing the clauses, and evolves into the unification-driven style, the second version. However, we found a counterexample of it. We modify the calculus and a new hyper tableau is represented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux (long version) (December 1996), from: http://www.uni-koblenz.de/fb4
Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer, Heidelberg (1996)
Baumgartner, P.: Hyper Tableaux—The Next Generation. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS, vol. 1397, pp. 60–76. Springer, Heidelberg (1998)
Chang, C., Lee, R.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, London (1973)
Fitting, M.: First Order Logic and Automated Theorem Proving. Texts and monographs in Computer Science. Springer, Heidelberg (1990)
Letz, R., Mayr, K., Goller, C.: Controlled integrations of the Cut Rule into Connection Tableau Calculi. Journal of Automated Reasoning 13 (1994)
Baumgartner, P.: FDPLL—A First-Order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831. Springer, Heidelberg (2000)
Baumgartner, P., Tinelli, C.: The Model Evolution Calculus. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 350–364. Springer, Heidelberg (2003)
Letz, R., Stenz, G.: Proof and Model Generation with Disconnection Tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 142–156. Springer, Heidelberg (2001)
Letz, R.: First-Order Calculi and Proof Procedures for Automated Deduction. Darmstadt: Technische Hochschule Darmstadt (1993)
Kuhn, M.: Rigid Hypertableaux. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS (LNAI), vol. 1303. Springer, Heidelberg (1997)
Robinson, J.A.: Automated deduction with hyper-resolution. I. J. Comput. Math. 1, 227–234 (1965)
Brand, D.: Analytic Resolution in Theorem Proving. Artificial Intelligence 7, 285–318 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feng, S., Sun, J., Wu, X. (2006). Hyper Tableaux — The Third Version. In: Lang, J., Lin, F., Wang, J. (eds) Knowledge Science, Engineering and Management. KSEM 2006. Lecture Notes in Computer Science(), vol 4092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811220_12
Download citation
DOI: https://doi.org/10.1007/11811220_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37033-8
Online ISBN: 978-3-540-37035-2
eBook Packages: Computer ScienceComputer Science (R0)