Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Formal Methods and Cryptography

  • Conference paper
FM 2006: Formal Methods (FM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4085))

Included in the following conference series:

  • 1209 Accesses

Abstract

Security-critical systems are an important application area for formal methods. However, such systems often contain cryptographic subsystems. The natural definitions of these subsystems are probabilistic and in most cases computational. Hence it is not obvious how one can treat cryptographic subsystems in a sound way within formal methods, in particular if one does not want to encumber the proof of an overall system by probabilities and computational restrictions due only to its cryptographic subsystems.

We survey our progress on integrating cryptography into formal models, in particular our work on reactive simulatability (RSIM), a refinement notion suitable for cryptography. We also present the underlying system model which unifies a computational and a more abstract presentation and allows generic distributed scheduling. We show the relation of RSIM and other types of specifications, and clarify what role the classical Dolev-Yao (term algebra) abstractions from cryptography can play in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Backes, M., Mödersheim, S., Pfitzmann, B., Viganò, L.: Symbolic and Cryptographic Analysis of the Secure WS-ReliableMessaging Scenario. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 428–445. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Backes, M., Pfitzmann, B.: Intransitive non-interference for cryptographic purposes. In: Proc. 24th IEEE Symp. on Security & Privacy, pp. 140–152 (2003)

    Google Scholar 

  3. Backes, M., Pfitzmann, B.: Relating symbolic and cryptographic secrecy. IEEE Transactions on Dependable and Secure Computing 2(2), 109–123 (2005)

    Article  Google Scholar 

  4. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: Proc. 10th ACM CCS, pp. 220–230 (2003)

    Google Scholar 

  5. Beaver, D.: Secure multiparty protocols and zero knowledge proof systems tolerating a faulty minority. Journal of Cryptology 4(2), 75–122 (1991)

    Article  MATH  Google Scholar 

  6. Bhargavan, K., Corin, R., Fournet, C., Gordon, A.: Secure sessions for web services. In: ACM Workshop on Secure Web Services (SWS). ACM Press, New York (to appear, 2004)

    Google Scholar 

  7. Bhargavan, K., Fournet, C., Gordon, A., Pucella, R.: TulaFale: A Security Tool for Web Services. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 197–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 3(1), 143–202 (2000)

    Article  MathSciNet  Google Scholar 

  9. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. 42nd IEEE FOCS, pp. 136–145 (2001)

    Google Scholar 

  10. Dierks, T., Allen, C.: The TLS Protocol Version 1.0, Internet RFC 2246 (1999)

    Google Scholar 

  11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – or – a completeness theorem for protocols with honest majority. In: Proc. 19th ACM STOC, pp. 218–229 (1987)

    Google Scholar 

  12. Goldwasser, S., Levin, L.: Fair computation of general functions in presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)

    Google Scholar 

  13. Lincoln, P., Mitchell, J., Mitchell, M., Scedrov, A.: A probabilistic poly-time framework for protocol analysis. In: Proc. 5th ACM CCS, pp. 112–121 (1998)

    Google Scholar 

  14. Micali, S., Rogaway, P.: Secure computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)

    Google Scholar 

  15. Pfitzmann, B., Waidner, M.: Composition and integrity preservation of secure reactive systems. In: Proc. 7th ACM CCS, pp. 245–254 (2000)

    Google Scholar 

  16. Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: Proc. 22nd IEEE Symp. on Security & Privacy, pp. 184–200 (2001)

    Google Scholar 

  17. Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographically sound theorem proving. In: Proc. 19th IEEE CSFW (to appear, 2006)

    Google Scholar 

  18. Yao, A.C.: Theory and applications of trapdoor functions. In: Proc. 23rd IEEE FOCS, pp. 80–91 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Backes, M., Pfitzmann, B., Waidner, M. (2006). Formal Methods and Cryptography. In: Misra, J., Nipkow, T., Sekerinski, E. (eds) FM 2006: Formal Methods. FM 2006. Lecture Notes in Computer Science, vol 4085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11813040_44

Download citation

  • DOI: https://doi.org/10.1007/11813040_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37215-8

  • Online ISBN: 978-3-540-37216-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics