Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods

  • Conference paper
  • First Online:
Formal Methods in Computer-Aided Design (FMCAD 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2517))

Included in the following conference series:

Abstract

We present a new way of using Binary Decision Diagrams in automata based algorithms for solving the satisfiability problem of quantifier-free Presburger arithmetic. Unlike in previous approaches [5,2,19], we translate the satisfiability problem into a model checking problem and use the existing BDD-based model checker SMV [13] as our primary engine.

We also compare the performance of various Presburger tools, based on both automata and ILP approaches, on a large suite of parameterized randomly generated test cases. The strengths and weaknesses of each approach as a function of these parameters are reported, and the reasons for the same are discussed. The results show that no single tool performs better than the others for all the parameters.

On the theoretical side, we provide tighter bounds on the number of states of the automata.

This research was supported by GSRC contract SA2206-23106PG-2 and in part by National Science Foundation CCR-9806889-002. The content of this paper does not necessarily reflect the position or the policy of GSRC, NSF, or the Government, and no official endorsement should be inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tod Amon, Gaetano Borriello, Taokuan Hu, and Jiwen Liu. Symbolic timing verification of timing diagrams using Presburger formulas. In Design Automation Conference, pages 226–231, 1997.

    Google Scholar 

  2. Alexandre Boudet and Hubert Comon. Diophantine equations, Presburger arithmetic and finite automata. In H. Kirchner, editor, Colloquium on Trees in Algebra and Programming (CAAP’96), volume 1059 of Lecture Notes in Computer Science, pages 30–43. Springer Verlag, 1996.

    Google Scholar 

  3. R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear programming. InIEEEVLSIDesign’01 & Asia and South Pacific Design Automation Conference, Bangalore, pages 741–746, 2002.

    Google Scholar 

  4. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers, 35(8):677–691, 1986.

    Article  MATH  Google Scholar 

  5. J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für mathematische Logik und Grundladen der Mathematik, 6:66–92, 1960.

    Article  MATH  Google Scholar 

  6. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model checking: 1020 states and beyond. Information and Computation, 98:142–170, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

    Article  MATH  Google Scholar 

  8. D. C. Cooper. Theorem proving in arithmetic without multiplication. In Machine Intelligence, volume 7, pages 91–99, New York, 1972. American Elsevier.

    MATH  Google Scholar 

  9. George B. Dantzig and B. Curtis Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatorial Theory (A), 14:288–297, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  10. Jacob Elgaard, Nils Klarlund, and Anders Møller. Mona 1.x: new techniques for ws1s and ws2s. In Computer Aided Verification, CAV’ 98, Proceedings, volume 1427 of LNCS. Springer Verlag, 1998.

    Chapter  Google Scholar 

  11. P. Johannsen and R. Drechsler. Formal verification on the RT level computing one-to-one design abstractions by signal width reduction. In IFIP International Conference on Very Large Scale Integration (VLSI’01), Montpellier, 2001, pages 127–132, 2001.

    Google Scholar 

  12. G. Kreisel and J. Krivine. Elements of mathematical logic, 1967.

    Google Scholar 

  13. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion Problem. Kluwer Academic Publishers, 1993.

    Google Scholar 

  14. Derek C. Oppen. A 222pn upper bound on the complexity of Presburger arithmetic. Journal of Computer and System Sciences, 16(3):323–332, June 1978.

    Google Scholar 

  15. M. Presburger. Uber de vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchen, die addition als einzige operation hervortritt. In Comptes Rendus du Premier Congrès des Mathématicienes des Pays Slaves, pages 92–101, 395, Warsaw, 1927.

    Google Scholar 

  16. William Pugh. The omega test: a fast and practical integer programming algorithm for dependence analysis. In Supercomputing, pages 4–13, 1991.

    Google Scholar 

  17. T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A comparison of Presburger engines for EFSM reachability. In A. J. Hu and M. Y. Vardi, editors, Proceedings of the 10th International Conference on Computer Aided Verification, volume 1427, pages 280–292. Springer-Verlag, 1998.

    Google Scholar 

  18. H. P. Williams. Fourier-Motzkin elimination extension to integer programming problems. Journal of Combinatorial Theory (A), 21:118–123, 1976.

    Article  MATH  Google Scholar 

  19. Pierre Wolper and Bernard Boigelot. On the construction of automata from linear arithmetic constraints. In Proc. 6th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, volume 1785 of Lecture Notes in Computer Science, pages 1–19, Berlin, March 2000. Springer-Verlag.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganesh, V., Berezin, S., Dill, D.L. (2002). Deciding Presburger Arithmetic by Model Checking and Comparisons with Other Methods. In: Aagaard, M.D., O’Leary, J.W. (eds) Formal Methods in Computer-Aided Design. FMCAD 2002. Lecture Notes in Computer Science, vol 2517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36126-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-36126-X_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00116-4

  • Online ISBN: 978-3-540-36126-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics