Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pattern Structures and Their Projections

  • Conference paper
  • First Online:
Conceptual Structures: Broadening the Base (ICCS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2120))

Included in the following conference series:

Abstract

Pattern structures consist of objects with descriptions (called patterns) that allow a semilattice operation on them. Pattern structures arise naturally from ordered data, e.g., from labeled graphs ordered by graph morphisms. It is shown that pattern structures can be reduced to formal contexts, however sometimes processing the former is often more efficient and obvious than processing the latter. Concepts, implications, plausible hypotheses, and classifications are defined for data given by pattern structures. Since computation in pattern structures may be intractable, approximations of patterns by means of projections are introduced. It is shown how concepts, implications, hypotheses, and classifications in projected pattern structures are related to those in original ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.-G. Bartel, Matematische Methoden in der Chemie, Spektrum, Heidelberg, 1996.

    Google Scholar 

  2. F. Baader and R. Molitor, Building and Structuring Description Logic Knowledge Spaces Using Least Common Subsumers and Concept Analysis, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 292–305.

    Google Scholar 

  3. G. Birkhoff: Lattice Theory. AMS Colloquium Publications XXV, Providence, Rhode Island, 3rd edition 1967.

    MATH  Google Scholar 

  4. L. Chaudron and N. Maille, Generalized Formal Concept Analysis, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 357–370.

    Google Scholar 

  5. B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1990.

    Google Scholar 

  6. M. Erné, Einführung in die Ordnungstheorie, Mannheim, B.I.-Wissenschaftsverlag, 1982.

    MATH  Google Scholar 

  7. S. Férré and O. Ridoux, A Logical Generalization of Formal Concept Analysis, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000.

    Google Scholar 

  8. V. K. Finn, Plausible Reasoning in Systems of JSM Type, Itogi Nauki i Tekhniki, Seriya Informatika, 15, 54–101, 1991 [in Russian].

    Google Scholar 

  9. B. Ganter and K. Reuter, Finding all closed sets: a general approach, Order, 8, 283–290, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Ganter and S. O. Kuznetsov, Stepwise Construction of the Dedekind-MacNeille Completion, Proc. 6th Int. Conf. on Conceptual Structures, ICCS’98, M-L. Mugnier, M. Chein, Eds., Lecture Notes in Artificial Intelligence, 1453, 1998, pp. 295–302.

    Google Scholar 

  11. B. Ganter and S. O. Kuznetsov, Formalizing Hypotheses with Concepts, Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 342–356.

    Google Scholar 

  12. B. Ganter and R. Wille, Formal Concept Analysis. Mathematical Foundations, Berlin, Springer, 1999.

    Google Scholar 

  13. M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, New York, Freeman, 1979.

    MATH  Google Scholar 

  14. R. Gugisch, Lattice Contexts: A Generalization in Formal Concept Analysis, unpublished manuscript, 2000.

    Google Scholar 

  15. S. O. Kuznetsov, JSM-method as a Machine Learning System, Itogi Nauki Tekhn., ser. Informatika, no. 15, 17–54, 1991 [in Russian].

    Google Scholar 

  16. S.O. Kuznetsov, Learning of Simple Conceptual Graphs from Positive and Negative Examples, in Proc. Principles of Data Mining and Knowledge Discovery, Third European Conference, PKDD’99, J. Zytkow, J. Rauch, Eds., Lecture Notes in Artificial Intelligence, 1704, 1999, pp. 384–392.

    Google Scholar 

  17. M. Liquiere and J. Sallantin, Structural Machine Learning with Galois Lattice and Graphs, Proc. Int. Conf. Machine Learning ICML’98, 1998.

    Google Scholar 

  18. M.-L. Mugnier and M. Chein, Représenter des connaissances et raisonner avec des graphes, Revue d’Intelligence Artificielle, 10(1), 1996, pp. 7–56.

    MATH  Google Scholar 

  19. M.-L. Mugnier, Knowledge Representation and Reasonings Based on Graph Homomorphisms, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G. Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 172–192.

    Google Scholar 

  20. S. Prediger, Simple Concept Graphs: A Logic Approach, in Proc. 6th Int. Conf. on Conceptual Structures, ICCS’98, M.-L. Mugnier, M. Chein, Eds., Lecture Notes in Artificial Intelligence, 1453, 1998, pp. 225–239.

    Google Scholar 

  21. J. F. Sowa, Conceptual Structures-Information Processing in Mind and Machine, Reading, M.A.: Addison-Wesley, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganter, B., Kuznetsov, S.O. (2001). Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds) Conceptual Structures: Broadening the Base. ICCS 2001. Lecture Notes in Computer Science(), vol 2120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44583-8_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-44583-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42344-7

  • Online ISBN: 978-3-540-44583-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics