Abstract
We present a parallelization of Petkov, Christov, and Konstantinov’s algorithm for the pole assignment problem of single-input systems. Our new implementation is specially appropriate for current high performance processors and shared memory multiprocessors and obtains a high performance by reordering the access pattern, while maintaining the same numerical properties.
The experimental results on two different platforms (SGI PowerChallenge and SUN Enterprise) report a higher performance of the new implementation over traditional algorithms.
Supported by the Consellería de Cultura, Educación y Ciencia de la Generalidad Valenciana GV99-59-1-14 and the Fundació Caixa-Castelló Bancaixa.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
E. Anderson et al. LAPACK User’s Guide Release 2.0. (SIAM, Philadelphia (USA), 1994).
M. Castillo, G. Quintana-Ortí, V. Hernández, E. S. Quintana-Ortí. Blockpartitioned algorithms for the pole assignment problem of single-input systems. Proc. of the IFAC Conference on Systems Structure and Control-SSC’98, pp. 409–414, Nantes (France), July 1998.
C. L. Cox, W. F. Moss. Backward error analysis for a pole assignment algorithm. SIAM J. Matrix Analysis and Appl., Vol. 10, pp. 446–456, 1989.
T. Kailath. Linear systems. (Prentice-Hall, Englewood Cliffs (USA), 1980).
V. Mehrmann, H. Xu. An analysis of the pole placement problem: I. The singleinput case. Elec. Trans. on Numer. Anal., Vol. 4, pp. 89–105, 1996.
G. Miminis, C. C. Paige. An algorithm for pole assignment of time invariant linear systems. Int. J. of Control, Vol. 35, pp. 341–354, 1982.
G. Miminis, C. C. Paige. A direct algorithm for pole assignment of timeinvariant multi-input systems using state feedback. Automatica, Vol. 24, pp. 343–356, 1988.
G. Miminis, C. C. Paige. Implicit shifting in the QR and related algorithms. SIAM J. Matrix Analysis and Appl., Vol. 12, pp. 385–400, 1991.
R. V. Patel, P. Misra. Numerical algorithm for eigenvalue assignment by state feedback. Proc. IEEE, Vol. 72, pp. 1755–1764, 1984.
P. Hr. Petkov, N. D. Christov, M. M. Konstantinov. A computational algorithm for pole assignment of linear single-input systems. IEEE Trans. Autom. Control, AC-29, pp. 1045–1048, 1984.
P. Hr. Petkov, N. D. Christov, M. M. Konstantinov. Computational methods for linear control systems. (Prentice-Hall, Englewood Clifis (USA), 1991).
G. Quintana-Ortí, X. Sun, C. H. Bischof. A BLAS-3 version of the QR factorizaton with column pivoting. SIAMJ. Scientific Comp., Vol. 19, No.5, pp. 1486–1494, 1998.
P. Van Dooren. The generalized eigenstructure problem in linear systems theory. IEEE Trans. Autom. Control, AC-31, pp. 1755–1764, 1981.
A. Varga. A multishift Hessenberg algorithm for pole assignment of single-input systems. IEEE Trans. Autom. Control, AC-41, pp. 1795–1799, 1996.
W. M. Wonham. On pole assignment in multi-input controllable linear systems. IEEE Trans. Autom. Control, AC-12, pp. 660–665, 1967.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2001 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Castillo, M., Quintana-Ortí, E.S., Quintana-Ortí, G., Hernández, V. (2001). Parallel Pole Assignment of Single-Input Systems. In: Palma, J.M.L.M., Dongarra, J., Hernández, V. (eds) Vector and Parallel Processing — VECPAR 2000. VECPAR 2000. Lecture Notes in Computer Science, vol 1981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44942-6_32
Download citation
DOI: https://doi.org/10.1007/3-540-44942-6_32
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41999-0
Online ISBN: 978-3-540-44942-3
eBook Packages: Springer Book Archive