Abstract
Partially ordered multisets (or pomsets) constitute one of the most basic models of concurrency. We introduce and compare several notions of regularity for pomset languages by means of contexts and residues of different kinds. We establish some interesting closure properties that allow us to relate this approach to SP-recognizability in the particular case of series-parallel pomsets. Finally we introduce the framework of compatible languages which generalizes several classical formalisms (including message sequence charts and firing pomsets of Petri nets). In this way, we identify regular sets of pomsets as recognizable subsets in the monoid of multiset sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
R. Alur and M. Yannakakis: Model Checking of Message Sequence Charts. CONCUR’ 99, LNCS 1664 (1999) 114–129
A. Arnold: An extension of the notion of traces and asynchronous automata. Theoretical Informatics and Applications 25 (1991) 355–393
V. Diekert and Y. Métivier: Partial Commutations and Traces. Handbook of Formal languages, vol. 3 (1997) 457–533
M. Droste, P. Gastin, and D. Kuske: Asynchronous cellular automata for pomsets. Theoretical Computer Science Vol. 247 (2000) 1–38
M. Droste and D. Kuske: Logical definability of recognizable and aperiodic languages in concurrency monoids. LNCS 1092 (1996) 233–251
J. Fanchon: A syntactic congruence for the recognizability of pomset languages. RR 99008 (LAAS, Toulouse, 1999)
J. L. Gischer: The equational theory of pomsets. Theoretical Comp. Science 61 (1988) 199–224
J. Grabowski: On partial languages. Fund. Informatica IV(2) (1981) 427–498
D. Kuske: Infinite series-parallel posets: logic and languages. LNCS 1853 (2000) 648–662
D. Kuske and R. Morin: Pomsets for Local Trace Languages— Recognizability, Logic & Petri Nets. CONCUR 2000, LNCS 1877 (2000) 426–440
K. Lodaya and P. Weil: Series-parallel languages and the bounded-width property. Theoretical Comp. Science 237 (2000) 347–380
R. Morin: Recognizable Sets of Message Sequence Charts. STACS 2002, LNCS 2030 (2002) 332–342
M. Mukund, K. Narayan Kumar, and M. Sohoni: Synthesizing distributed finitestate systems from MSCs. CONCUR 2000, LNCS 1877 (2000) 521–535
V. Pratt: Modelling concurrency with partial orders. Int. J. of Parallel Programming 15 (1986) 33–71
W. Thomas: Automata Theory on Trees and Partial Orders. TAPSOFT 97, LNCS 1214 (1998) 20–34
W. Vogler: Modular Construction and Partial Order Semantics of Petri Nets. LNCS 625 (1992) 252–275
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2002 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fanchon, J., Morin, R. (2002). Regular Sets of Pomsets with Autoconcurrency. In: Brim, L., Křetínský, M., Kučera, A., Jančar, P. (eds) CONCUR 2002 — Concurrency Theory. CONCUR 2002. Lecture Notes in Computer Science, vol 2421. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45694-5_27
Download citation
DOI: https://doi.org/10.1007/3-540-45694-5_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44043-7
Online ISBN: 978-3-540-45694-0
eBook Packages: Springer Book Archive