Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algebraic constructions of efficient broadcast networks

  • Submitted Contributions
  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 1991)

Abstract

Cayley graph techniques are introduced for the problem of constructing networks having the maximum possible number of nodes, among networks that satisfy prescribed bounds on the parameters maximum node degree and broadcast diameter. The broadcast diameter of a network is the maximum time required for a message originating at a node of the network to be relayed to all other nodes, under the restriction that in a single time step any node can communicate with only one neighboring node. For many parameter values these algebraic methods yield the largest known constructions, improving on previous graph-theoretic approaches. It has previously been shown that hypercubes are optimal for degree k and broadcast diameter k. A construction employing dihedral groups is shown to be optimal for degree k and broadcast diameter k + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Annexstein, M. Baumslag and A. L. Rosenberg, “Group Action Graphs and Parallel Architectures,” SIAM Journal on Computing 19 (1990), 544–569.

    Google Scholar 

  2. J-C. Bermond, C. Delorme and J. J. Quisquater, “Strategies for Interconnection Networks: Some Methods From Graph Theory,” Journal of Parallel and Distributed Computing 3 (1986), 433–449.

    Google Scholar 

  3. J. Bond, C. Delorme and W. F. de La Vega, “Large Cayley Graphs with Small Degree and Diameter,” Rapport de Recherche no. 392, LRI, Orsay, France, 1987.

    Google Scholar 

  4. J-C. Bermond, P. Hell, A. L. Liestman and J. G. Peters, “New Minimum Broadcast Graphs and Sparse Broadcast Graphs,” Technical Report CMPT 88-4, School of Computing Science, Simon Fraser University, B. C., Canada, 1988.

    Google Scholar 

  5. J-C. Bermond, P. Hell, A. L. Liestman and J. G. Peters, “Broadcasting in Bounded Degree Graphs,” Technical Report CMPT 88-5, School of Computing Science, Simon Fraser Uiversity, B. C., Canada, 1988.

    Google Scholar 

  6. D. V. Chudnovsky, G. V. Chudnovsky and M. M. Denneau, “Regular Graphs with Small Diameters as Models for Interconnection Networks,” Proceedings of the Third International Conference on Supercomputing (Boston, May 1988), 232–239.

    Google Scholar 

  7. L. Campbell, G. E. Carlsson, M. J. Dinneen, V. Faber, M. R. Fellows, M. A. Langston, J. W. Moore, A. P. Mullhaupt and H. B. Sexton, “Small Diameter Symmetric Networks from Linear Groups,” IEEE Transactions on Computers, to appear.

    Google Scholar 

  8. G.E. Carlsson, J.E. Cruthirds, H.B. Sexton and C.G. Wright, “Interconnection Networks Based on Generalization of Cube-Connected Cycles,” IEEE Transactions on Computers, C-34 (1985), 769–777.

    Google Scholar 

  9. F. R. K. Chung, “Diameters of Graphs: Old Problems and New Results,” Congressus Numerantium 60 (1987), 295–317.

    Google Scholar 

  10. M. J. Dinneen, “Algebraic Methods for Efficient Network Constructions,” Master's Thesis, Computer Science Department, University of Victoria, Victoria, B. C., Canada.

    Google Scholar 

  11. S. T. Hedetniemi, S. M. Hedetniemi and A. L. Liestman, “A Survey of Broadcasting and Gossiping in Communication Networks,” Networks 18 (1988), 319–349.

    Google Scholar 

  12. A. L. Liestman and J. G. Peters, “Minimum Broadcast Digraphs,” Discrete Applied Mathematics, to appear.

    Google Scholar 

  13. A. L. Liestman and H. Somani, “Post-Survey Broadcasting and Gossiping Papers,” manuscript, School of Computing Science, Simon Fraser University, B. C., Canada.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Harold F. Mattson Teo Mora T. R. N. Rao

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dinneen, M.J., Fellows, M.R., Faber, V. (1991). Algebraic constructions of efficient broadcast networks. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 1991. Lecture Notes in Computer Science, vol 539. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54522-0_104

Download citation

  • DOI: https://doi.org/10.1007/3-540-54522-0_104

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54522-4

  • Online ISBN: 978-3-540-38436-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics