Abstract
Several security applications rely on monitoring network traffic, which is increasingly becoming encrypted. In this work, we propose a pattern language to describe packet trains for the purpose of fine-grained identification of application-level events in encrypted network traffic, and demonstrate its expressiveness with case studies for distinguishing Messaging, Voice, and Video events in Facebook, Skype, Viber, and WhatsApp network traffic. We provide an efficient implementation of this language, and evaluate its performance by integrating it into our proprietary DPI system. Finally, we demonstrate that the proposed pattern language can be mined from traffic samples automatically, minimizing the otherwise high ruleset maintenance burden.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We discard the TCP packets with only the ACK flag set. PUSH/ACK packets are kept.
- 2.
Through the dataset collection we make use of different application versions per application. This allows us to verify the generalisation ability and scalability of our methodology.
- 3.
These samples were generated using dummy accounts and non-personal mobile devices.
- 4.
In the following section, we discuss about how the signature formation affects the balance between TP and FP rates.
- 5.
False discovery rate can be calculated as \(FDR = FP/(TP + FP)\).
References
Android tcpdump. https://www.androidtcpdump.com. Accessed 09 Mar 2018-
Busybox (android application). https://play.google.com/store/apps/details?id=stericson.busybox&hl=en. Accessed 09 Mar 2018
netstat(8) - Linux man page. https://linux.die.net/man/8/netstat. Accessed 09 Mar 2018
Aceto, G., Ciuonzo, D., Montieri, A., Pescapé, A.: Multi-classification approaches for classifying mobile app traffic. J. Netw. Comput. Appl. 103, 131–145 (2018)
Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search. Commun. ACM 18(6), 333–340 (1975)
Alan, H.F., Kaur, J.: Can android applications be identified using only TCP/IP headers of their launch time traffic? In: Proceedings of the 9th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 61–66. ACM (2016)
Anonymized for submission: DPI engine anonymized for submission
Ateniese, G., Hitaj, B., Mancini, L.V., Verde, N.V., Villani, A.: No place to hide that bytes won’t reveal: sniffing location-based encrypted traffic to track a user’s position. Network and System Security. LNCS, vol. 9408, pp. 46–59. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25645-0_4
Bernaille, L., Teixeira, R.: Early recognition of encrypted applications. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 165–175. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71617-4_17
Chen, C., Asoni, D.E., Perrig, A., Barrera, D., Danezis, G., Troncoso, C.: Taranet: traffic-analysis resistant anonymity at the network layer. arXiv preprint arXiv:1802.08415 (2018)
Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Can’t you hear me knocking: identification of user actions on android apps via traffic analysis. In: Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, pp. 297–304. ACM (2015)
Conti, M., Mancini, L.V., Spolaor, R., Verde, N.V.: Analyzing android encrypted network traffic to identify user actions. IEEE Trans. Inf. Forensics Secur. 11(1), 114–125 (2016)
Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 321–338. IEEE (2015)
Coull, S.E., Dyer, K.P.: Traffic analysis of encrypted messaging services: apple imessage and beyond. ACM SIGCOMM Comput. Commun. Rev. 44(5), 5–11 (2014)
Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. Technical report, Naval Research Lab Washington DC (2004)
Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS) 32(2), 5 (2014)
Fu, Y., Xiong, H., Lu, X., Yang, J., Chen, C.: Service usage classification with encrypted internet traffic in mobile messaging apps. IEEE Trans. Mobile Comput. 15(11), 2851–2864 (2016)
Gomariz, A., Campos, M., Marin, R., Goethals, B.: ClaSP: an efficient algorithm for mining frequent closed sequences. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7818, pp. 50–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37453-1_5
Herrmann, D., Wendolsky, R., Federrath, H.: Website fingerprinting: attacking popular privacy enhancing technologies with the multinomial Naïve-Bayes classifier. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security, CCSW 2009, pp. 31–42. ACM, New York (2009)
Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification in the dark. ACM SIGCOMM Comput. Commun. Rev. 35, 229–240 (2005)
Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: horizontally scaling strong anonymity. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 406–422. ACM (2017)
Le Blond, S., Choffnes, D., Caldwell, W., Druschel, P., Merritt, N.: Herd: a scalable, traffic analysis resistant anonymity network for VoIP systems. ACM SIGCOMM Comput. Commun. Rev. 45, 639–652 (2015)
Li, W., Moore, A.W.: A machine learning approach for efficient traffic classification. In: 15th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS 2007, pp. 310–317. IEEE (2007)
Liu, J., Fu, Y., Ming, J., Ren, Y., Sun, L., Xiong, H.: Effective and real-time in-app activity analysis in encrypted internet traffic streams. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 335–344. ACM (2017)
Papadopoulos, E.P., Diamantaris, M., Papadopoulos, P., Petsas, T., Ioannidis, S., Markatos, E.P.: The long-standing privacy debate: mobile websites vs mobile apps. In: Proceedings of the 26th International Conference on World Wide Web, pp. 153–162. International World Wide Web Conferences Steering Committee (2017)
Partridge, C., Allman, M.: Ethical considerations in network measurement papers. Commun. ACM 59(10), 58–64 (2016)
Rapoport, M., Suter, P., Wittern, E., Lhótak, O., Dolby, J.: Who you gonna call? Analyzing web requests in android applications. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), pp. 80–90. IEEE (2017)
Razaghpanah, A., et al.: Haystack: In situ mobile traffic analysis in user space. ArXiv e-prints (2015)
Saltaformaggio, B., et al.: Eavesdropping on fine-grained user activities within smartphone apps over encrypted network traffic. In: WOOT (2016)
Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: AppScanner: automatic fingerprinting of smartphone apps from encrypted network traffic. In: 2016 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 439–454. IEEE (2016)
Taylor, V.F., Spolaor, R., Conti, M., Martinovic, I.: Robust smartphone app identification via encrypted network traffic analysis. IEEE Trans. Inf. Forensics Secur. 13(1), 63–78 (2018)
Van Den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private messaging resistant to traffic analysis. In: Proceedings of the 25th Symposium on Operating Systems Principles, pp. 137–152. ACM (2015)
Vasiliadis, G., Ioannidis, S.: GrAVity: a massively parallel antivirus engine. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 79–96. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15512-3_5
Vasiliadis, G., Koromilas, L., Polychronakis, M., Ioannidis, S.: GASPP: a GPU-accelerated stateful packet processing framework. In: USENIX Annual Technical Conference, pp. 321–332 (2014)
Vasiliadis, G., Polychronakis, M., Ioannidis, S.: MiDeA: a multi-parallel intrusion detection architecture. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 297–308. ACM (2011)
Wang, Q., Yahyavi, A., Kemme, B., He, W.: I know what you did on your smartphone: inferring app usage over encrypted data traffic. In: 2015 IEEE Conference on Communications and Network Security (CNS), pp. 433–441. IEEE (2015)
Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: ProfileDroid: multi-layer profiling of android applications. In: Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, pp. 137–148. ACM (2012)
Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers: making strong anonymity scale. In: OSDI, pp. 179–182 (2012)
Wright, C.V., Ballard, L., Coull, S.E., Monrose, F., Masson, G.M.: Spot me if you can: uncovering spoken phrases in encrypted VoIP conversations. In: IEEE Symposium on Security and Privacy, SP 2008, pp. 35–49. IEEE (2008)
Xu, Q., et al.: Automatic generation of mobile app signatures from traffic observations. In: IEEE Conference on Computer Communications (INFOCOM), pp. 1481–1489. IEEE (2015)
Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., Mao, Z.M.: SAMPLES: self adaptive mining of persistent lexical snippets for classifying mobile application traffic. In: Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, pp. 439–451. ACM (2015)
Yu, L., Wang, Q., Barrineau, G., Oakley, J., Brooks, R.R., Wang, K.C.: TARN: a SDN-based traffic analysis resistant network architecture. arXiv preprint arXiv:1709.00782 (2017)
Zhai, E., Wolinsky, D.I., Chen, R., Syta, E., Teng, C., Ford, B.: AnonRep: towards tracking-resistant anonymous reputation. In: NSDI, pp. 583–596 (2016)
Acknowledgements
The authors would like to thank their shepherd Roya Ensafi.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Papadogiannaki, E., Halevidis, C., Akritidis, P., Koromilas, L. (2018). OTTer: A Scalable High-Resolution Encrypted Traffic Identification Engine. In: Bailey, M., Holz, T., Stamatogiannakis, M., Ioannidis, S. (eds) Research in Attacks, Intrusions, and Defenses. RAID 2018. Lecture Notes in Computer Science(), vol 11050. Springer, Cham. https://doi.org/10.1007/978-3-030-00470-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-00470-5_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-00469-9
Online ISBN: 978-3-030-00470-5
eBook Packages: Computer ScienceComputer Science (R0)