Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Symbolic Representation of Convex Polyhedra in High-Dimensional Spaces

  • Conference paper
  • First Online:
Automated Technology for Verification and Analysis (ATVA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11138))

  • 1358 Accesses

Abstract

This work is aimed at developing an efficient data structure for representing symbolically convex polyhedra. We introduce an original data structure, the Decomposed Convex Polyhedron (DCP), that is closed under intersection and linear transformations, and allows to check inclusion, equality, and emptiness. The main feature of DCPs lies in their ability to represent concisely polyhedra that can be expressed as combinations of simpler sets, which can overcome combinatorial explosion in high dimensional spaces. DCPs also have the advantage of being reducible into a canonical form, which makes them efficient for representing simple sets constructed by long sequences of manipulations, such as those handled by state-space exploration tools. Their practical efficiency has been evaluated with the help of a prototype implementation, with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    They are also known as NNC (Not Necessarily Closed) polyhedra, or copolyhedra.

  2. 2.

    The test cases are available at http://www.montefiore.ulg.ac.be/~boigelot/research/atva2018-case-study.tgz.

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  2. Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. Polytopes – Combinatorics and Computation, pp. 177–198. Birkhäuser, Basel (2000)

    Google Scholar 

  3. Bachem, A., Grötschel, M.: Characterizations of adjacency of faces of polyhedra. Mathematical Programming at Oberwolfach, pp. 1–22. Springer, Berlin (1981)

    Google Scholar 

  4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bagnara, R., Hill, P.M., Zaffanella, E.: Applications of polyhedral computations to the analysis and verification of hardware and software systems. Theor. Comput. Sci. 410(46), 4672–4691 (2009)

    Article  MathSciNet  Google Scholar 

  6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proceedings of the SMT’10 (2010)

    Google Scholar 

  7. Boigelot, B., Herbreteau, F., Mainz, I.: Acceleration of affine hybrid transformations. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 31–46. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_4

    Chapter  Google Scholar 

  8. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC’1999. LNCS, vol. 1569, pp. 46–60. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48983-5_8

    Chapter  Google Scholar 

  10. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_12

    Chapter  Google Scholar 

  11. Chernikova, N.: Algorithm for finding a general formula for the non-negative solutions of a system of linear inequalities. USSR Comput. Math. Math. Phys. 5(2), 228–233 (1965)

    Article  MathSciNet  Google Scholar 

  12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the POPL’77. pp. 238–252. ACM Press (1977)

    Google Scholar 

  13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Proceedings of the POPL’78. pp. 84–96. ACM (1978)

    Google Scholar 

  14. Degbomont, J.F.: Implicit Real-Vector Automata. Ph.D. thesis, Université de Liège (2013)

    Google Scholar 

  15. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008)

    Article  Google Scholar 

  16. Fukuda, K.: cdd. https://www.inf.ethz.ch/personal/fukudak/cdd_home/

  17. Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Proceedings of the POPL’17, pp. 46–59. ACM (2017)

    Google Scholar 

  18. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means of convex approximations. In: Le Charlier, B. (ed.) SAS 1994. LNCS, vol. 864, pp. 223–237. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58485-4_43

    Chapter  Google Scholar 

  19. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Form. Methods Syst. Des. 11(2), 157–185 (1997)

    Article  Google Scholar 

  20. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

    Chapter  Google Scholar 

  21. Le Verge, H., Wilde, D.: PolyLib. http://www.irisa.fr/polylib/

  22. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The Double Description Method, pp. 51–74. Princeton University Press, Princeton (1953)

    Google Scholar 

  23. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1999)

    Google Scholar 

Download references

Acknowledgment

The authors wish to thank Pascal Fontaine and Laurent Poirrier for their precious help in obtaining relevant benchmarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Mainz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boigelot, B., Mainz, I. (2018). Efficient Symbolic Representation of Convex Polyhedra in High-Dimensional Spaces. In: Lahiri, S., Wang, C. (eds) Automated Technology for Verification and Analysis. ATVA 2018. Lecture Notes in Computer Science(), vol 11138. Springer, Cham. https://doi.org/10.1007/978-3-030-01090-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01090-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01089-8

  • Online ISBN: 978-3-030-01090-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics