Abstract
We propose a dynamic version of the double description method for generating the extreme rays of a polyhedral cone. The dynamic version of the algorithm supports online input of inequalities. Some modifications of the method were implemented and the results of computational experiments are presented. On a series of problems, our implementation of the algorithm showed higher performance results in comparison with the known analogues.
This work was supported by the Russian Science Foundation Grant No. 17-11-01336.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amato, G., Scozzari, F., Zaffanella, E.: Efficient constraint/generator removal from double description of polyhedra. Electron. Notes Theor. Comput. Sci. 307, 3–15 (2014)
Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. In: Kalai, G., Ziegler, G.M. (eds.) Polytopes-Combinatorics and Computation, vol. 29, pp. 177–198. Springer, Basel (2000). https://doi.org/10.1007/978-3-0348-8438-9_9
Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom. 7(5–6), 265–301 (1997)
Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discret. Comput. Geom. 8(3), 295–313 (1992)
Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)
Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)
Bastrakov, S.I., Zolotykh, N.Y.: Elimination of inequalities from a facet description of a polyhedron. Trudy Inst. Mat. i Mekh. UrO RAN 21(3), 37–45 (2015). (in Russian)
Bastrakov, S.I., Zolotykh, N.Y.: On the dynamic problem of computing generators of a polyhedral cone. Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 9(1), 5–12 (2017). (in Russian)
Bastrakov, S.I., Zolotykh, N.Y.: Fast method for verifying Chernikov rules in Fourier-Motzkin elimination. Comput. Math. Math. Phys. 55(1), 160–167 (2015)
Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet enumeration. Discret. Comput. Geom. 20(3), 333–357 (1998)
Chernikov, S.: Linear Inequalities. Nauka, Moscow (1968). (in Russian)
Chernikova, N.: Algorithm for finding a general formula for the non-negative solutions of system of linear inequalities. U.S.S.R. Comput. Math. Math. Phys. 5(2), 228–233 (1965)
Demenkov, M., Filimonov, N.: Polyhedral barrier regulator design using non-monotonic Lyapunov function. In: 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference), pp. 1–3. IEEE (2016)
Fukuda, K., Prodon, A.: Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds.) CCS 1995. LNCS, vol. 1120, pp. 91–111. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61576-8_77
Horst, R., Pardalos, P.M., Van Thoai, N.: Introduction to Global Optimization. Springer, Dordrecht (2000)
Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.: The double description method. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to Theory of Games, vol. 2. Princeton University Press, Princeton (1953)
Perry, J.: Exploring the dynamic Buchberger algorithm. In: Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, pp. 365–372. ACM (2017)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24. Springer, Heidelberg (2003)
Terzer, M., Stelling, J.: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19), 2229–2235 (2008)
Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer, Heidelberg (2012)
Zolotykh, N.Y., Kubarev, V.K., Lyalin, S.S.: Double description method over the field of algebraic numbers. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki 28(2), 161–175 (2018). (in Russian)
Zolotykh, N.: New modification of the double description method for constructing the skeleton of a polyhedral cone. Comput. Math. Math. Phys. 52(1), 146–156 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Semenov, S.O., Zolotykh, N.Y. (2019). A Dynamic Algorithm for Constructing the Dual Representation of a Polyhedral Cone. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Lecture Notes in Computer Science(), vol 11548. Springer, Cham. https://doi.org/10.1007/978-3-030-22629-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-22629-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-22628-2
Online ISBN: 978-3-030-22629-9
eBook Packages: Computer ScienceComputer Science (R0)