Abstract
Both member registration and member revocation are essential features in group signature schemes. In ASIACRYPT 2016 Libert, Ling, Mouhartem, Nguyen, and Wang suggested a simple joining mechanism with their lattice-based group signature scheme with member registration. However, their scheme does not support member revocation. Verifier-local revocation is a member revocation approach in group signature schemes, which only requires the verifiers to keep the revocation messages while existing members have no burden. Since there is no workload for existing members related to revocation messages, verifier-local revocation method became the most suitable revocation approach for any environment. However, original group signature schemes with verifier-local revocability satisfy weaker security. This paper adds verifier-local revocation mechanism to the Libert’s (ASIACRYPT 2016) scheme to produce a fully dynamic lattice-based group signature scheme with member registration and member revocation using verifier-local revocation mechanism. Moreover, the resulted scheme achieves stronger security than the security in the original group signature schemes with verifier-local revocation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28
Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009, pp. 75–86 (2009)
Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36504-4_14
Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38
Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3
Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-CCS 2004, pp. 168–177. ACM (2004)
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_7
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)
Brickell, E.: An efficient protocol for anonymously providing assurance of the container of the private key. Submitted to the Trusted Computing Group, April 2003
Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46588-1_19
Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5
Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_4
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: ACM 2008, pp. 197–206. ACM (2008)
Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23
Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. Int. J. Secur. Netw. 1(1–2), 24–45 (2006)
Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_20
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13
Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15
Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016). https://doi.org/10.1561/0400000074
Perera, M.N.S., Koshiba, T.: Achieving almost-full security for lattice-based fully dynamic group signatures with verifier-local revocation. In: ISPEC 2018. LNCS (2018, to appear)
Perera, M.N.S., Koshiba, T.: Fully dynamic group signature scheme with member registration and verifier-local revocation. In: ICMC 2018. Mathematics and Computing (2018, to appear)
Perera, M.N.S., Koshiba, T.: Zero-knowledge proof for lattice-based group signature schemes with verifier-local revocation. In: 9th International Workshop on Trustworthy Computing and Security (TwCSec-2018). LNDT (2018, to appear)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93. ACM Press (2005)
Acknowledgments
This work is supported in part by JSPS Grant-in-Aids for Scientic Research (A) JP16H01705 and for Scientic Research (B) JP17H01695.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Perera, M.N.S., Koshiba, T. (2018). Achieving Strong Security and Verifier-Local Revocation for Dynamic Group Signatures from Lattice Assumptions. In: Katsikas, S., Alcaraz, C. (eds) Security and Trust Management. STM 2018. Lecture Notes in Computer Science(), vol 11091. Springer, Cham. https://doi.org/10.1007/978-3-030-01141-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-01141-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-01140-6
Online ISBN: 978-3-030-01141-3
eBook Packages: Computer ScienceComputer Science (R0)