Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Achieving Strong Security and Verifier-Local Revocation for Dynamic Group Signatures from Lattice Assumptions

  • Conference paper
  • First Online:
Security and Trust Management (STM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11091))

Included in the following conference series:

Abstract

Both member registration and member revocation are essential features in group signature schemes. In ASIACRYPT 2016 Libert, Ling, Mouhartem, Nguyen, and Wang suggested a simple joining mechanism with their lattice-based group signature scheme with member registration. However, their scheme does not support member revocation. Verifier-local revocation is a member revocation approach in group signature schemes, which only requires the verifiers to keep the revocation messages while existing members have no burden. Since there is no workload for existing members related to revocation messages, verifier-local revocation method became the most suitable revocation approach for any environment. However, original group signature schemes with verifier-local revocability satisfy weaker security. This paper adds verifier-local revocation mechanism to the Libert’s (ASIACRYPT 2016) scheme to produce a fully dynamic lattice-based group signature scheme with member registration and member revocation using verifier-local revocation mechanism. Moreover, the resulted scheme achieves stronger security than the security in the original group signature schemes with verifier-local revocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    Chapter  MATH  Google Scholar 

  2. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009, pp. 75–86 (2009)

    Google Scholar 

  3. Ateniese, G., Song, D., Tsudik, G.: Quasi-efficient revocation of group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36504-4_14

    Chapter  Google Scholar 

  4. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

    Chapter  Google Scholar 

  5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3

    Chapter  Google Scholar 

  7. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-CCS 2004, pp. 168–177. ACM (2004)

    Google Scholar 

  8. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 117–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_7

    Chapter  Google Scholar 

  9. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)

    Google Scholar 

  10. Brickell, E.: An efficient protocol for anonymously providing assurance of the container of the private key. Submitted to the Trusted Computing Group, April 2003

    Google Scholar 

  11. Brickell, E., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete logarithm based signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46588-1_19

    Chapter  Google Scholar 

  12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  13. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_4

    Chapter  Google Scholar 

  14. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: ACM 2008, pp. 197–206. ACM (2008)

    Google Scholar 

  16. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23

    Chapter  Google Scholar 

  17. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23

    Chapter  Google Scholar 

  18. Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. Int. J. Secur. Netw. 1(1–2), 24–45 (2006)

    Article  Google Scholar 

  19. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_20

    Chapter  Google Scholar 

  20. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13

    Chapter  Google Scholar 

  21. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19

    Chapter  Google Scholar 

  22. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15

    Chapter  Google Scholar 

  23. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016). https://doi.org/10.1561/0400000074

    Article  MathSciNet  MATH  Google Scholar 

  24. Perera, M.N.S., Koshiba, T.: Achieving almost-full security for lattice-based fully dynamic group signatures with verifier-local revocation. In: ISPEC 2018. LNCS (2018, to appear)

    Chapter  Google Scholar 

  25. Perera, M.N.S., Koshiba, T.: Fully dynamic group signature scheme with member registration and verifier-local revocation. In: ICMC 2018. Mathematics and Computing (2018, to appear)

    Chapter  Google Scholar 

  26. Perera, M.N.S., Koshiba, T.: Zero-knowledge proof for lattice-based group signature schemes with verifier-local revocation. In: 9th International Workshop on Trustworthy Computing and Security (TwCSec-2018). LNDT (2018, to appear)

    Google Scholar 

  27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93. ACM Press (2005)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by JSPS Grant-in-Aids for Scientic Research (A) JP16H01705 and for Scientic Research (B) JP17H01695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maharage Nisansala Sevwandi Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perera, M.N.S., Koshiba, T. (2018). Achieving Strong Security and Verifier-Local Revocation for Dynamic Group Signatures from Lattice Assumptions. In: Katsikas, S., Alcaraz, C. (eds) Security and Trust Management. STM 2018. Lecture Notes in Computer Science(), vol 11091. Springer, Cham. https://doi.org/10.1007/978-3-030-01141-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01141-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01140-6

  • Online ISBN: 978-3-030-01141-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics