Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Viewpoint Estimation for Workpieces with Deep Transfer Learning from Cold to Hot

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11301))

Included in the following conference series:

Abstract

With the revival of deep neural networks, viewpoint estimation problem can be handled by the learned distinctive features. However, the scarcity and expensiveness of viewpoint annotation for the real-world industrial workpieces impede its progress of application. In this paper, we propose a deep transfer learning method for viewpoint estimation by transferring priori knowledge from labeled synthetic images to unlabeled real images. The synthetic images are rendered from 3D Computer-Aided Design (CAD) models and annotated automatically. To boost the performance of deep transfer network, we design a new two-stage training strategy called cold-to-hot training. At the cold start stage, deep networks are trained for the joint tasks of classification and knowledge transfer in the absence of labels of real images. But after it turns into the hot stage, the pseudo labels of real images are employed for controlling the distributions of input data. The satisfactory experimental results demonstrate the effectiveness of the proposed method in dealing with the viewpoint estimation problem under the scarcity of annotated real workpiece images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/haotian-wang/viewpoint-estimation.

References

  1. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  2. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola, A.J.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–e57 (2006)

    Article  Google Scholar 

  3. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  4. Chen, T., Lu, S.: Robust vehicle detection and viewpoint estimation with soft discriminative mixture model. IEEE Trans. Circuits Syst. Video Technol. 27(2), 394–403 (2017)

    Article  Google Scholar 

  5. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_18

    Chapter  Google Scholar 

  6. Ghifary, M., Kleijn, W.B., Zhang, M.: Domain adaptive neural networks for object recognition. In: Pham, D.-N., Park, S.-B. (eds.) PRICAI 2014. LNCS (LNAI), vol. 8862, pp. 898–904. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13560-1_76

    Chapter  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  10. Leavers, V.F.: Shape Detection in Computer Vision Using the Hough Transform. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4471-1940-1

    Book  MATH  Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  12. Li, Y., Bu, R., Sun, M., Chen, B.: PointCNN. arXiv preprint arXiv:1801.07791 (2018)

  13. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  14. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217 (2017)

    Google Scholar 

  15. Lu, C., Xia, S., Huang, W., Shao, M., Fu, Y.: Circle detection by arc-support line segments. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 76–80. IEEE (2017)

    Google Scholar 

  16. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  17. Peng, X., Sun, B., Ali, K., Saenko, K.: Exploring invariances in deep convolutional neural networks using synthetic images. CoRR, abs/1412.7122 2(4) (2014)

    Google Scholar 

  18. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. Proc. Comput. Vis. Pattern Recognit. (CVPR) 1(2), 4 (2017)

    Google Scholar 

  19. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5105–5114 (2017)

    Google Scholar 

  20. Rad, M., Oberweger, M., Lepetit, V.: Feature mapping for learning fast and accurate 3D pose inference from synthetic images. arXiv preprint arXiv:1712.03904 (2017)

  21. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  23. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  24. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 3, p. 6 (2017)

    Google Scholar 

  25. Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2686–2694 (2015)

    Google Scholar 

  26. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  27. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  28. Tremblay, J., et al.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. arXiv preprint arXiv:1804.06516 (2018)

  29. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: maximizing for domain invariance. Computer Science (2014)

    Google Scholar 

  30. Wang, Y., Li, S., Jia, M., Liang, W.: Viewpoint estimation for objects with convolutional neural network trained on synthetic images. In: Chen, E., Gong, Y., Tie, Y. (eds.) PCM 2016. LNCS, vol. 9917, pp. 169–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48896-7_17

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key Scientific Instruments and Equipment Development Program of China (2013YQ03065101), the National Natural Science Foundation of China under Grant 61521063 and Grant 61503243.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaochen Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, C., Wang, H., Gu, C., Wu, K., Guan, X. (2018). Viewpoint Estimation for Workpieces with Deep Transfer Learning from Cold to Hot. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04167-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04166-3

  • Online ISBN: 978-3-030-04167-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics