Abstract
An annulus is, informally, a ring-shaped region, often described by two concentric circles. The maximum-width empty annulus problem asks to find an annulus of a certain shape with the maximum possible width that avoids a given set of n points in the plane. This problem can also be interpreted as the problem of finding an optimal location of a ring-shaped obnoxious facility among the input points. In this paper, we study square and rectangular variants of the maximum-width empty anuulus problem, and present first nontrivial algorithms. Specifically, our algorithms run in \(O(n^3)\) and \(O(n^2 \log n)\) time for computing a maximum-width empty axis-parallel square and rectangular annulus, respectively. Both algorithms use only O(n) space.
S.W. Bae was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07042755). P.R.S. Mahapatra was supported by Research Project through Department of Atomic Energy (NBHM), Government of India with Ref. No. 2/48(19)/2014/R&D-II/1045.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abellanas, M., Hurtado, F., Icking, C., Ma, L., Palop, B., Ramos, P.: Best fitting rectangles. In: Proceedings of European Workshop on Computational Geometry (EuroCG 2003) (2003)
Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM Comput. Surv. 30(4), 412–458 (1998)
Agarwal, P.K., Sharir, M., Toledo, S.: Applications of parametric searching in geometric optimization. J. Algo. 17(3), 292–318 (1994)
Aggarwal, A., Suri, S.: Fast algorithms for computing the largest empty rectangle. In: Proceedings of the Third Annual Symposium on Computational Geometry (SoCG 1987), pp. 278–290 (1987)
Bae, S.W.: Computing a minimum-width square annulus in arbitrary orientation. Theoret. Comput. Sci. 718, 2–13 (2018)
Chazelle, B.: An algorithm for segment-dragging and its implementation. Algorithmica 3(1), 205–221 (1988)
Cheng, S.W.: Widest empty L-shaped corridor. Inform. Proc. Lett. 58(6), 277–283 (1996)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2
DÃz-Báñez, J., López, M., Sellarès, J.: On finding a widest empty 1-corner corridor. Inform. Proc. Lett. 98(5), 199–205 (2006)
DÃz-Báñez, J.M., Hurtado, F., Meijer, H., Rappaport, D., Sellarès, J.A.: The largest empty annulus problem. Int. J. Comput. Geom. Appl. 13(4), 317–325 (2003)
Ebara, H., Fukuyama, N., Nakano, H., Nakanishi, Y.: Roundness algorithms using the Voronoi diagrams. In: Abstract: 1st Canadian Conference on Computational Geometry (CCCG 1989), p. 41 (1989)
Gluchshenko, O.N., Hamacher, H.W., Tamir, A.: An optimal \(O(n\log n)\) algorithm for finding an enclosing planar rectilinear annulus of minimum width. Oper. Res. Lett. 37(3), 168–170 (2009)
Hershberger, J.: Finding the upper envelope of \(n\) line segments in \(O(n log n)\) time. Inform. Proc. Lett. 33(4), 169–174 (1989)
Houle, M., Maciel, A.: Finding the widest empty corridor through aset of points. In: Toussaint, G. (ed.) Snapshots of Computational and Discrete Geometry, pp. 201–213, Department Computer Science, McGill University (1988)
Janardan, R., Preparata, F.P.: Widest-corridor problems. Nordic J. Comput. 1, 231–245 (1994)
Mahapatra, P.R.S.: Largest empty axis-parallel rectangular annulus. J. Emerg. Trends Comput. Inf. Sci. 3(6) (2012)
Mukherjee, J., Mahapatra, P.R.S., Karmakar, A., Das, S.: Minimum-width rectangular annulus. Theoret. Comput. Sci. 508, 74–80 (2013)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1990). https://doi.org/10.1007/978-1-4612-1098-6
Roy, U., Zhang, X.: Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error. Comput. Aided Des. 24(3), 161–168 (1992)
Toussaint, G.T.: Computing largest empty circles with location constraints. Int. J. Comput. Info. Sci. 12(5), 347–358 (1983)
Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proceedings of the IEEE MELECON 1983, pp. 1–4 (1983)
Wainstein, A.D.: A non-monotonous placement problem in the plane. In: Abstract: 9th All-Union Symposium USSR Software Systems for Solving Optimal Planning Problems, pp. 70–71 (1986)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bae, S.W., Baral, A., Sinha Mahapatra, P.R. (2019). Maximum-Width Empty Square and Rectangular Annulus. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-10564-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10563-1
Online ISBN: 978-3-030-10564-8
eBook Packages: Computer ScienceComputer Science (R0)