Abstract
When reconstructing 3D scene by an autonomous system we usually use a pin hole camera. To adopt the result for a human vision, this camera must be replaced by a human eye-like device. Therefore we derive certain characteristics of this model in an appropriate mathematical formalism. In particular, we escribe the general position of a human eye and its movements using the notions of geometric algebra. The assumption is that the eye is focused on distant targets. As the main result, we describe the eye position and determine all axes of rotation available in the eye general position in terms of geometric algebra. All the expressions are based on medically traced laws of Donders’ and Listing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bayro-Corrochano, W.: Modeling the 3D kinematics of the eye in the geometric algebra framework. Pattern Recogn. 36(12), 2993–3012 (2003). https://doi.org/10.1016/S0031-3203(03)00180-8
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry, 1st edn. Morgan Kaufmann Publishers Inc., Burlington (2007)
Haslwanter, T.: Mathematics of three-dimensional eye rotations. Vision. Res. 35(12), 1727–1739 (1995). https://doi.org/10.1016/0042-6989(94)00257-M
Hestenes, D.: New Foundations for Classical Mechanics, 2nd edn. Kluwer Academic Publishers, Dordrecht (1999)
Hildenbrand, D.: Foundations of Geometric Algebra Computing. Springer, New York (2013). https://doi.org/10.1007/978-3-642-31794-1
Hrdina, J., Návrat, A.: Binocular computer vision based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 27c, 1945–1959 (2017). https://doi.org/10.1007/s00006-017-0764-4
Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric control of the trident snake robot based on CGA. Adv. Appl. Clifford Algebr. 27, 621–632 (2017)
Hrdina, J., Vašík, P.: Notes on differential kinematics in conformal geometric algebra approach. In: Matoušek, R. (ed.) Mendel 2015. AISC, vol. 378, pp. 363–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19824-8_30
Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Geometric algebras for uniform colour spaces. Math. Methods Appl. Sci. 41, 4117–4130 (2018). https://doi.org/10.1002/mma.4489
Hrdina, J., Návrat, A., Vašík, P.: Control of 3-link robotic snake based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 26, 1069–1080 (2016). https://doi.org/10.1007/s00006-015-0621-2
Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: Fish eye correction by CGA non-linear transformation. Math. Methods Appl. Sci. 41, 4106–4116 (2018). https://doi.org/10.1002/mma.4455
Hrdina, J., Návrat, A., Vašík, P., Matoušek, R.: CGA-based robotic snake control. Adv. Appl. Clifford Algebr. 27, 621–632 (2017). https://doi.org/10.1007/s00006-016-0695-5
Lounesto, P.: Clifford Algebra and Spinors, 2nd edn. Cambridge University Press, Cambridge (2006)
MacDonald, A.: Linear and Geometric Algebra. Third printing, corrected and slightly revised (2010)
Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, New York (2009). https://doi.org/10.1007/978-3-540-89068-3
Wong, A.M.F.: Listing’s law: clinical significance and implications for neural control. Surv. Ophthalmol. 49(6), 563–575 (2004). https://doi.org/10.1016/j.survophthal.2004.08.002
Acknowledgements
This research was supported by a grant of the Czech Science Foundation no. 17-21360S, “Advances in Snake-like Robot Control” and by a Grant No. FSI-S-17-4464.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Stodola, M. (2019). Monocular Kinematics Based on Geometric Algebras. In: Mazal, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2018. Lecture Notes in Computer Science(), vol 11472. Springer, Cham. https://doi.org/10.1007/978-3-030-14984-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-14984-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-14983-3
Online ISBN: 978-3-030-14984-0
eBook Packages: Computer ScienceComputer Science (R0)