Abstract
We provide new zero-knowledge argument of knowledge systems that work directly for a wide class of language, namely, ones involving the satisfiability of matrix-vector relations and integer relations commonly found in constructions of lattice-based cryptography. Prior to this work, practical arguments for lattice-based relations either have a constant soundness error \((2/3)\), or consider a weaker form of soundness, namely, extraction only guarantees that the prover is in possession of a witness that “approximates” the actual witness. Our systems do not suffer from these limitations.
The core of our new argument systems is an efficient zero-knowledge argument of knowledge of a solution to a system of linear equations, where variables of this solution satisfy a set of quadratic constraints. This argument enjoys standard soundness, a small soundness error \((1/poly)\), and a complexity linear in the size of the solution. Using our core argument system, we construct highly efficient argument systems for a variety of statements relevant to lattices, including linear equations with short solutions and matrix-vector relations with hidden matrices.
Based on our argument systems, we present several new constructions of common privacy-preserving primitives in the standard lattice setting, including a group signature, a ring signature, an electronic cash system, and a range proof protocol. Our new constructions are one to three orders of magnitude more efficient than the state of the art (in standard lattice). This illustrates the efficiency and expressiveness of our argument system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In this paper, operations over group elements in \(\mathbb {Z}_q\) are modulo q unless otherwise specified.
- 2.
In [19], parameters are set in a slightly mild way, so, the signature size is smaller if we use their criterion to select parameters.
- 3.
There exists a soundness gap in the proof, but it will not affect the proved argument due to the commitment with a relaxed opening.
- 4.
Detailed constructions of ZKAoKs for elementary relations can be found in Sect. 4, e.g, the ZKAoK for lattice-based PKE is in fact a ZKAoK for a variant of \(\mathcal {R}_{ short }\).
- 5.
In fact, we only obtain a relaxed argument for the opening of the commitment. This is sufficient for our purpose.
- 6.
In fact, we will use its variant in the standard lattice setting. For completeness, we will restate its security in the security proof of our main construction.
References
Ajtai, M.: Generating hard instances of lattice problems. In: STOC, pp. 99–108. ACM (1996)
Alamati, N., Peikert, C., Stephens-Davidowitz, N.: New (and old) proof systems for lattice problems. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 619–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_21
Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security Symposium, vol. 2016 (2016)
Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20
Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_29
Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learning with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp. 305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_16
Bindel, N., et al.: qTESLA. Submission to the NIST’s post-quantum cryptography standardization process (2018)
Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: CCS, pp. 1006–1018. ACM (2016)
Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In: EuroS&P, pp. 353–367. IEEE (2018)
Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from lattices. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 163–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_9
Boschini, C., Camenisch, J., Neven, G.: Relaxed lattice-based signatures with short zero-knowledge proofs. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8_1
Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_4
Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston (1983). https://doi.org/10.1007/978-1-4757-0602-4_18
Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22
del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: CCS, pp. 574–591. ACM (2018)
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. Cryptology ePrint Archive, Report 2018/773 (2018). https://eprint.iacr.org/2018/773
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Fouque, P.-A., et al.: Falcon: fast-fourier lattice-based compact signatures over NTRU. Submission to the NIST’s post-quantum cryptography standardization process (2018)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)
Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lattice problems. In: STOC, pp. 1–9. ACM (1998)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC, pp. 291–304. ACM (1985)
Goldwasser, S., Kharchenko, D.: Proof of plaintext knowledge for the Ajtai-Dwork cryptosystem. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 529–555. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_29
Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23
Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9
Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius problem. Comput. Complex. 14(2), 90–121 (2005)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868
Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: A signature scheme from learning with truncation. Cryptology ePrint Archive, Report 2017/995 (2017). https://eprint.iacr.org/2017/995
Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23
Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_3
Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_20
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13
Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge arguments for matrix-vector relations and lattice-based group encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 101–131. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_4
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1
Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based PRFs and applications to e-cash. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_11
Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge arguments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_24
Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21
Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8
Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 58–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_3
Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_10
Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35
Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43
Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_11
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: FOCS, pp. 372–381. IEEE (2004)
Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2
Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_17
Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_18
Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint Archive, Report 2017/099 (2017). https://eprint.iacr.org/2017/099
Peikert, C.: A decade of lattice cryptography. Found. Trends® Theor. Comput. Sci. 10(4), 283–424 (2016)
Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 536–553. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_30
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2
Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Lattice-based techniques for accountable anonymity: composition of abstract stern’s protocols and weak PRF with efficient protocols from LWR. Cryptology ePrint Archive, Report 2017/781 (2017). http://eprint.iacr.org/2017/781
Acknowledgement
We appreciate the anonymous reviewers for their valuable suggestions. Part of this work was supported by the National Natural Science Foundation of China (Grant No. 61602396, 61572294, 61632020), Early Career Scheme research grant (ECS Grant No. 25206317) from the Research Grant Council of Hong Kong, the Innovation and Technology Support Programme of Innovation and Technology Fund of Hong Kong (Grant No. ITS/356/17), and the MonashU-PolyU-Collinstar Capital Joint Lab on Blockchain.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W. (2019). Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11692. Springer, Cham. https://doi.org/10.1007/978-3-030-26948-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-26948-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-26947-0
Online ISBN: 978-3-030-26948-7
eBook Packages: Computer ScienceComputer Science (R0)