Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2019 (CRYPTO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11692))

Included in the following conference series:

Abstract

We provide new zero-knowledge argument of knowledge systems that work directly for a wide class of language, namely, ones involving the satisfiability of matrix-vector relations and integer relations commonly found in constructions of lattice-based cryptography. Prior to this work, practical arguments for lattice-based relations either have a constant soundness error \((2/3)\), or consider a weaker form of soundness, namely, extraction only guarantees that the prover is in possession of a witness that “approximates” the actual witness. Our systems do not suffer from these limitations.

The core of our new argument systems is an efficient zero-knowledge argument of knowledge of a solution to a system of linear equations, where variables of this solution satisfy a set of quadratic constraints. This argument enjoys standard soundness, a small soundness error \((1/poly)\), and a complexity linear in the size of the solution. Using our core argument system, we construct highly efficient argument systems for a variety of statements relevant to lattices, including linear equations with short solutions and matrix-vector relations with hidden matrices.

Based on our argument systems, we present several new constructions of common privacy-preserving primitives in the standard lattice setting, including a group signature, a ring signature, an electronic cash system, and a range proof protocol. Our new constructions are one to three orders of magnitude more efficient than the state of the art (in standard lattice). This illustrates the efficiency and expressiveness of our argument system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this paper, operations over group elements in \(\mathbb {Z}_q\) are modulo q unless otherwise specified.

  2. 2.

    In [19], parameters are set in a slightly mild way, so, the signature size is smaller if we use their criterion to select parameters.

  3. 3.

    There exists a soundness gap in the proof, but it will not affect the proved argument due to the commitment with a relaxed opening.

  4. 4.

    Detailed constructions of ZKAoKs for elementary relations can be found in Sect. 4, e.g, the ZKAoK for lattice-based PKE is in fact a ZKAoK for a variant of \(\mathcal {R}_{ short }\).

  5. 5.

    In fact, we only obtain a relaxed argument for the opening of the commitment. This is sufficient for our purpose.

  6. 6.

    In fact, we will use its variant in the standard lattice setting. For completeness, we will restate its security in the security proof of our main construction.

References

  1. Ajtai, M.: Generating hard instances of lattice problems. In: STOC, pp. 99–108. ACM (1996)

    Google Scholar 

  2. Alamati, N., Peikert, C., Stephens-Davidowitz, N.: New (and old) proof systems for lattice problems. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 619–643. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_21

    Chapter  Google Scholar 

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security Symposium, vol. 2016 (2016)

    Google Scholar 

  4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_35

    Chapter  Google Scholar 

  5. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  6. Baum, C., Damgård, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient commitments from structured lattice assumptions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 368–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_20

    Chapter  Google Scholar 

  7. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better zero-knowledge proofs for lattice encryption and their application to group signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_29

    Chapter  Google Scholar 

  8. Benhamouda, F., Krenn, S., Lyubashevsky, V., Pietrzak, K.: Efficient zero-knowledge proofs for commitments from learning with errors over rings. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp. 305–325. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24174-6_16

    Chapter  Google Scholar 

  9. Bindel, N., et al.: qTESLA. Submission to the NIST’s post-quantum cryptography standardization process (2018)

    Google Scholar 

  10. Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from LWE. In: CCS, pp. 1006–1018. ACM (2016)

    Google Scholar 

  11. Bos, J., et al.: CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM. In: EuroS&P, pp. 353–367. IEEE (2018)

    Google Scholar 

  12. Boschini, C., Camenisch, J., Neven, G.: Floppy-sized group signatures from lattices. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 163–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_9

    Chapter  Google Scholar 

  13. Boschini, C., Camenisch, J., Neven, G.: Relaxed lattice-based signatures with short zero-knowledge proofs. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018. LNCS, vol. 11060, pp. 3–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99136-8_1

    Chapter  Google Scholar 

  14. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_4

    Chapter  Google Scholar 

  15. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston (1983). https://doi.org/10.1007/978-1-4757-0602-4_18

    Chapter  Google Scholar 

  16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_22

    Chapter  Google Scholar 

  17. del Pino, R., Lyubashevsky, V., Seiler, G.: Lattice-based group signatures and zero-knowledge proofs of automorphism stability. In: CCS, pp. 574–591. ACM (2018)

    Google Scholar 

  18. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  19. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications to ring signatures. Cryptology ePrint Archive, Report 2018/773 (2018). https://eprint.iacr.org/2018/773

  20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  21. Fouque, P.-A., et al.: Falcon: fast-fourier lattice-based compact signatures over NTRU. Submission to the NIST’s post-quantum cryptography standardization process (2018)

    Google Scholar 

  22. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

    Google Scholar 

  23. Goldreich, O., Goldwasser, S.: On the limits of non-approximability of lattice problems. In: STOC, pp. 1–9. ACM (1998)

    Google Scholar 

  24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC, pp. 291–304. ACM (1985)

    Google Scholar 

  25. Goldwasser, S., Kharchenko, D.: Proof of plaintext knowledge for the Ajtai-Dwork cryptosystem. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 529–555. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_29

    Chapter  MATH  Google Scholar 

  26. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23

    Chapter  Google Scholar 

  27. Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_9

    Chapter  Google Scholar 

  28. Guruswami, V., Micciancio, D., Regev, O.: The complexity of the covering radius problem. Comput. Complex. 14(2), 90–121 (2005)

    Article  MathSciNet  Google Scholar 

  29. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  30. Hoffstein, J., Pipher, J., Whyte, W., Zhang, Z.: A signature scheme from learning with truncation. Cryptology ePrint Archive, Report 2017/995 (2017). https://eprint.iacr.org/2017/995

  31. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_23

    Chapter  Google Scholar 

  32. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signatures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_3

    Chapter  Google Scholar 

  33. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_20

    Chapter  Google Scholar 

  34. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes with efficient protocols and dynamic group signatures from lattice assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 373–403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_13

    Chapter  Google Scholar 

  35. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Zero-knowledge arguments for matrix-vector relations and lattice-based group encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 101–131. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_4

    Chapter  Google Scholar 

  36. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: logarithmic-size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_1

    Chapter  Google Scholar 

  37. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based PRFs and applications to e-cash. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 304–335. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_11

    Chapter  Google Scholar 

  38. Libert, B., Ling, S., Nguyen, K., Wang, H.: Lattice-based zero-knowledge arguments for integer relations. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 700–732. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_24

    Chapter  Google Scholar 

  39. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_21

    Chapter  Google Scholar 

  40. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_8

    Chapter  Google Scholar 

  41. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter, shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19

    Chapter  Google Scholar 

  42. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving full dynamicity with ease. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 293–312. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_15

    Chapter  Google Scholar 

  43. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Constant-size group signatures from lattices. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 58–88. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_3

    Chapter  Google Scholar 

  44. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_10

    Chapter  Google Scholar 

  45. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    Chapter  Google Scholar 

  46. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  47. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 293–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_11

    Chapter  Google Scholar 

  48. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: FOCS, pp. 372–381. IEEE (2004)

    Google Scholar 

  49. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_2

    Chapter  Google Scholar 

  50. Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_17

    Chapter  Google Scholar 

  51. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_18

    Chapter  Google Scholar 

  52. Papadopoulos, D., et al.: Making NSEC5 practical for DNSSEC. Cryptology ePrint Archive, Report 2017/099 (2017). https://eprint.iacr.org/2017/099

  53. Peikert, C.: A decade of lattice cryptography. Found. Trends® Theor. Comput. Sci. 10(4), 283–424 (2016)

    Article  MathSciNet  Google Scholar 

  54. Peikert, C., Vaikuntanathan, V.: Noninteractive statistical zero-knowledge proofs for lattice problems. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 536–553. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_30

    Chapter  Google Scholar 

  55. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)

    Google Scholar 

  56. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  57. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_2

    Chapter  Google Scholar 

  58. Yang, R., Au, M.H., Lai, J., Xu, Q., Yu, Z.: Lattice-based techniques for accountable anonymity: composition of abstract stern’s protocols and weak PRF with efficient protocols from LWR. Cryptology ePrint Archive, Report 2017/781 (2017). http://eprint.iacr.org/2017/781

Download references

Acknowledgement

We appreciate the anonymous reviewers for their valuable suggestions. Part of this work was supported by the National Natural Science Foundation of China (Grant No. 61602396, 61572294, 61632020), Early Career Scheme research grant (ECS Grant No. 25206317) from the Research Grant Council of Hong Kong, the Innovation and Technology Support Programme of Innovation and Technology Fund of Hong Kong (Grant No. ITS/356/17), and the MonashU-PolyU-Collinstar Capital Joint Lab on Blockchain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Ho Au or Qiuliang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., Whyte, W. (2019). Efficient Lattice-Based Zero-Knowledge Arguments with Standard Soundness: Construction and Applications. In: Boldyreva, A., Micciancio, D. (eds) Advances in Cryptology – CRYPTO 2019. CRYPTO 2019. Lecture Notes in Computer Science(), vol 11692. Springer, Cham. https://doi.org/10.1007/978-3-030-26948-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26948-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26947-0

  • Online ISBN: 978-3-030-26948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics