Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FoodKG: A Semantics-Driven Knowledge Graph for Food Recommendation

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2019 (ISWC 2019)

Abstract

The proliferation of recipes and other food information on the Web presents an opportunity for discovering and organizing diet-related knowledge into a knowledge graph. Currently, there are several ontologies related to food, but they are specialized in specific domains, e.g., from an agricultural, production, or specific health condition point-of-view. There is a lack of a unified knowledge graph that is oriented towards consumers who want to eat healthily, and who need an integrated food suggestion service that encompasses food and recipes that they encounter on a day-to-day basis, along with the provenance of the information they receive. Our resource contribution is a software toolkit that can be used to create a unified food knowledge graph that links the various silos related to food while preserving the provenance information. We describe the construction process of our knowledge graph, the plan for its maintenance, and how this knowledge graph has been utilized in several applications. These applications include a SPARQL-based service that lets a user determine what recipe to make based on ingredients at hand while taking constraints such as allergies into account, as well as a cognitive agent that can perform natural language question answering on the knowledge graph.

Resource Website: https://foodkg.github.io

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    USDA refers to US Department of Agriculture. https://www.usda.gov.

  2. 2.

    DBpedia [2] has structured content from the information created in the Wikipedia.

  3. 3.

    The dbo prefix refers to http://dbpedia.org/ontology and dbo:ingredient dereferences to http://dbpedia.org/ontology/ingredient.

  4. 4.

    The dbr prefix refers to http://dbpedia.org/resource and dbr:Chocolate_cake dereferences to http://dbpedia.org/resource/Chocolate_cake.

  5. 5.

    The Recipe1M dataset is available for download after signing up at: http://im2recipe.csail.mit.edu/dataset.

  6. 6.

    Prefixes can be dereferenced via http://prefix.cc or http://www.ontobee.org.

References

  1. American Diabetes Association: 4. lifestyle management: standards of medical care in diabetes—2018. Diab. Care 40(Suppl. 1), S33–S43 (2017)

    Article  Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. Batista, F., Pardal, J.P., Mamede, P.V.N., Ribeiro, R.: Ontology construction: cooking domain. Artif. Intell.: Method. Syst. Appl. 41, 1–30 (2006)

    Google Scholar 

  4. Boulos, M., Yassine, A., Shirmohammadi, S., Namahoot, C., Brückner, M.: Towards an “internet of food”: food ontologies for the Internet of Things. Future Internet 7(4), 372–392 (2015)

    Article  Google Scholar 

  5. Cantais, J., Dominguez, D., Gigante, V., Laera, L., Tamma, V.: An example of food ontology for diabetes control. In: ISWC workshop on Ontology Patterns for the Semantic Web (2005)

    Google Scholar 

  6. Chen, Y., Wu, L., Zaki, M.J.: Bidirectional attentive memory networks for question answering over knowledge bases. In: Annual Conference of the North American Chapter of the Association for Computational Linguistics (2019)

    Google Scholar 

  7. Clunis, J.: Designing an ontology for managing the diets of hypertensive individuals. Int. J. Digit. Librar. 20, 269–284 (2019)

    Article  Google Scholar 

  8. DeSalvo, K., Olson, R., Casavale, K.: Dietary guidelines for Americans. JAMA 315(5), 457–458 (2016)

    Article  Google Scholar 

  9. Dooley, D.M., et al.: FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration. npj Sci. Food 2(1), 23 (2018)

    Article  Google Scholar 

  10. Dragoni, M., Bailoni, T., Maimone, R., Eccher, C.: HeLiS: an ontology for supporting healthy lifestyles. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 53–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_4

    Chapter  Google Scholar 

  11. El-Dosuky, M.A., Rashad, M.Z., Hamza, T.T., EL-Bassiouny, A.H.: Food recommendation using ontology and heuristics. In: Hassanien, A.E., Salem, A.-B.M., Ramadan, R., Kim, T. (eds.) AMLTA 2012. CCIS, vol. 322, pp. 423–429. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35326-0_42

    Chapter  Google Scholar 

  12. Groth, P., Gibson, A., Velterop, J.: The anatomy of a nanopublication. Inf. Serv. Use 30, 51–56 (2010)

    Google Scholar 

  13. Gyrard, A., Bonnet, C., Boudaoud, K., Serrano, M.: Lov4iot: a second life for ontology-based domain knowledge to build semantic web of things applications. In: 4th IEEE International Conference on Future Internet of Things and Cloud (2016)

    Google Scholar 

  14. Helmy, T., Al-Nazer, A., Al-Bukhitan, S., Iqbal, A.: Health, food and user’s profile ontologies for personalized information retrieval. Procedia Comput. Sci. 52, 1071–1076 (2015)

    Article  Google Scholar 

  15. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. In: 15th Conference of the European Chapter of the Association for Computational Linguistics (2017)

    Google Scholar 

  16. Kolchin, M., Zamula, D.: Food product ontology: Initial implementation of a vocabulary for describing food products. In: 14th Conference of Open Innovations Association (2013)

    Google Scholar 

  17. Ley, S.H., Hamdy, O., Mohan, V., Hu, F.B.: Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383(9933), 1999–2007 (2014)

    Article  Google Scholar 

  18. Marin, J., et al.: Recipe1m: a dataset for learning cross-modal embeddings for cooking recipes and food images. arXiv preprint arXiv:1810.06553 (2018)

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  20. Peroni, S., Lodi, G., Asprino, L., Gangemi, A., Presutti, V.: FOOD: FOod in open data. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 168–176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_18

    Chapter  Google Scholar 

  21. Rashid, S.M., Chastain, K., Stingone, J.A., McGuinness, D.L., McCusker, J.P.: The semantic data dictionary approach to data annotation & integration. In: 1st Workshop on Enabling Open Semantic Science (2017)

    Google Scholar 

  22. Snae, C., Bruckner, M.: FOODS: a food-oriented ontology-driven system. In: 2nd IEEE International Conference on Digital Ecosystems and Technologies (2008)

    Google Scholar 

  23. Trattner, C., Elsweiler, D.: Food recommender systems: important contributions, challenges and future research directions. arXiv preprint arXiv:1711.02760 (2017)

  24. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Scientific Data 3, 160018 EP - (2016)

    Google Scholar 

  25. Xiang, Z., Courtot, M., Brinkman, R.R., Ruttenberg, A., He, Y.: Ontofox: web-based support for ontology reuse. BMC Res. Notes 3(1), 175 (2010)

    Article  Google Scholar 

  26. Zulaika, U., Gutiérrez, A., López-de Ipiña, D.: Enhancing profile and context aware relevant food search through knowledge graphs. In: 12th International Conference on Ubiquitous Computing and Ambient Intelligence (2018)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by IBM Research AI through the AI Horizons Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oshani Seneviratne or Mohammed J. Zaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haussmann, S. et al. (2019). FoodKG: A Semantics-Driven Knowledge Graph for Food Recommendation. In: Ghidini, C., et al. The Semantic Web – ISWC 2019. ISWC 2019. Lecture Notes in Computer Science(), vol 11779. Springer, Cham. https://doi.org/10.1007/978-3-030-30796-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30796-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30795-0

  • Online ISBN: 978-3-030-30796-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics