Abstract
In multi-label classification a datapoint can be labelled with more than one class at the same time. A common but trivial approach to multi-label classification is to train individual binary classifiers per label, but the performance can be improved by considering associations between the labels, and algorithms like classifier chains and RAKEL do this effectively. Like most machine learning algorithms, however, these approaches require accurate hyperparameter tuning, a computationally expensive optimisation problem. Tuning is important to train a good multi-label classifier model. There is a scarcity in the literature of effective multi-label classification approaches that do not require extensive hyperparameter tuning. This paper addresses this scarcity by proposing CascadeML, a multi-label classification approach based on cascade neural network that takes label associations into account and requires minimal hyperparameter tuning. The performance of the CasecadeML approach is evaluated using 10 multi-label datasets and compared with other leading multi-label classification algorithms. Results show that CascadeML performs comparatively with the leading approaches but without a need for hyperparameter tuning.
This research was supported by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A version of CascadeML is available at: https://github.com/phoxis/CascadeML.
References
Baluja, S., Fahlman, S.: Reducing network depth in the cascade-correlation learning architecture. Technical report CMU-CS-94-209, Carnegie Mellon University, Pittsburgh, PA, October 1994
Charte, F., Rivera, A., del Jesus, M.J., Herrera, F.: Concurrence among Imbalanced labels and its influence on multilabel resampling algorithms. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 110–121. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07617-1_10
Chen, Z., Chi, Z., Fu, H., Feng, D.: Multi-instance multi-label image classification: a neural approach. Neurocomputing 99, 298–306 (2013)
Cheng, W., Hullermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2–3), 211–225 (2009)
Crammer, K., Singer, Y.: A family of additive online algorithms for category ranking. J. Mach. Learn. Res. 3, 1025–1058 (2003)
Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems 2, pp. 524–532. Morgan-Kaufmann (1990)
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems 28, pp. 2962–2970 (2015)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Grodzicki, R., Mańdziuk, J., Wang, L.: Improved multilabel classification with neural networks. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 409–416. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_41
Hansen, L.K., Pedersen, M.W.: Controlled growth of cascade correlation nets. In: Marinaro, M., Morasso, P.G. (eds.) ICANN 1994, pp. 797–800. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2097-1_189
Herrera, F., Charte, F., Rivera, A.J., del Jesús, M.J.: Multilabel Classification - Problem Analysis, Metrics and Techniques. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41111-8
Igel, C., Hüsken, M.: Improving the Rprop learning algorithm. In: Proceedings of the Second International ICSC Symposium on Neural Computation (NC 2000), vol. 2000, pp. 115–121. Citeseer (2000)
Kelleher, J.D., Mac Namee, B., D’Arcy, A.: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. The MIT Press, Cambridge (2015)
Madjarov, G., Kocev, D., Gjorgjevikj, D., Dz̆eroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)
Mencia, E.L., Furnkranz, J.: Pairwise learning of multilabel classifications with perceptrons. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2899–2906, June 2008
Nam, J., Kim, J., Loza MencÃa, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-label text classification — revisiting neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp. 437–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-9_28
Nissen, S.: Large scale reinforcement learning using q-sarsa (\(\lambda \)) and cascading neural networks. Unpublished masters thesis, Department of Computer Science, University of Copenhagen, København, Denmark (2007)
Pakrashi, A., Greene, D., Mac Namee, B.: Benchmarking multi-label classification algorithms. In: 24th Irish Conference on Artificial Intelligence and Cognitive Science (AICS 2016). CEUR Workshop Proceedings (2016)
Phatak, D.S., Koren, I.: Connectivity and performance tradeoffs in the cascade correlation learning architecture. IEEE Trans. Neural Netw. 5(6), 930–935 (1994)
Prechelt, L.: Investigation of the cascor family of learning algorithms. Neural Netw. 10(5), 885–896 (1997)
Read, J., Pérez-Cruz, F.: Deep learning for multi-label classification. CoRR abs/1502.05988 (2015)
Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)
Rojas, R.: Neural Networks: A Systematic Introduction. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-61068-4
de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 308–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_25
de Sá, A.G.C., Pappa, G.L., Freitas, A.A.: Towards a method for automatically selecting and configuring multi-label classification algorithms. In: GECCO (2017)
Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel classification algorithms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 401–406. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87881-0_40
Tsoumakas, G., Katakis, I., Vlahavas, I.: Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of ECML/PKDD 2008 Workshop on Mining Multidimensional Data (MMD 2008), vol. 21, pp. 53–59. sn (2008)
Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: a Java library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)
Tsoumakas, G., Vlahavas, I.P.: Random k-labelsets: an ensemble method for multilabel classification. In: ECML (2007)
Waugh, S., Adams, A.: Connection strategies in cascade-correlation. In: The Fifth Australian Conference on Neural Networks, pp. 1–4 (1994)
Wei, Y., et al.: CNN: single-label to multi-label. CoRR abs/1406.5726 (2014)
Wever, M., Mohr, F., Hüllermeier, E.: Automated multi-label classification based on ML-Plan. CoRR abs/1811.04060 (2018)
Yu, Q., Wang, J., Zhang, S., Gong, Y., Zhao, J.: Combining local and global hypotheses in deep neural network for multi-label image classification. Neurocomputing 235, 38–45 (2017)
Zhang, M.L., Zhou, Z.H.: ML-kNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007)
Zhang, M.L.: ML-RBF: RBF neural networks for multi-label learning. Neural Process. Lett. 29(2), 61–74 (2009)
Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)
Zhu, J., Liao, S., Lei, Z., Li, S.Z.: Multi-label convolutional neural network based pedestrian attribute classification. Image Vis. Comput. 58, 224–229 (2017)
Zhuang, N., Yan, Y., Chen, S., Wang, H., Shen, C.: Multi-label learning based deep transfer neural network for facial attribute classification. Pattern Recogn. 80, 225–240 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pakrashi, A., Mac Namee, B. (2019). CascadeML: An Automatic Neural Network Architecture Evolution and Training Algorithm for Multi-label Classification (Best Technical Paper). In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXVI. SGAI 2019. Lecture Notes in Computer Science(), vol 11927. Springer, Cham. https://doi.org/10.1007/978-3-030-34885-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-34885-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34884-7
Online ISBN: 978-3-030-34885-4
eBook Packages: Computer ScienceComputer Science (R0)