Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance of the Particle-in-Cell Method with the Intel (Broadwell, KNL) and IBM Power9 Architectures

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1129))

Included in the following conference series:

  • 937 Accesses

Abstract

The particle-in-cell method is one of the efficient methods of plasma simulation. But the principal limitation of the method is its resource intensity. As the motion computation of a large number of model particles can be performed using the parallel algorithms, the computational node architecture is very important. In this paper comparison is made of the performance of the particle-in-cell method between the classic Intel Broadwell architecture, Intel Xeon Phi accelerators, and IBM Power9 processor. As the number of computing operations per one particle depends on its form-factor, in the given paper comparison has been made of the form-factors from the first to the fourth order. The computational experiments have shown that the IBM and Intel Broadwell nodes are similar in performance, and the use of Intel KNL in case of higher-order form-factors can promote essential performance growth. Moreover, in order to effectively use the modern processors it is necessary to take into account their key features such as the memory access, vector instructions, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Institute of Physics Publishing, Bristol (1991)

    Book  Google Scholar 

  2. Andrianov, A.N., Efimkin, K.N.: Particles in cell method: accounting in a parallel implementation the particles interaction. Keldysh Inst. Prepr. 071, 16 (2016)

    Google Scholar 

  3. Bastrakov, S., Surmin, I., Efimenko, E., Gonoskov, A., Meyerov, I.: Performance aspects of collocated and staggered grids for particle-in-cell plasma simulation. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 94–100. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_8

    Chapter  Google Scholar 

  4. Aplin, K.L., Tarakanov, V.P.: Modelling studies of charged particle interactions for a space application. Inst. Phys. Conf. Ser. 178, 221–226 (2003)

    Google Scholar 

  5. Bulanov, S.V., Naumova, N.M., Vshivkov, V.A., Dudnikova, G.I., Pegoraro, F., Pogorelsky, I.V.: Laser acceleration of charged particles in inhomogeneous plasmas. In: Plasma Physics Reports, vol. 23, no. 4, pp. 259–269 (1997)

    Google Scholar 

  6. Berendeev, E., Dudnikova, G., Efimova, A., Vshivkov, V.: Computer simulation of plasma dynamics in open plasma trap. In: Dimov, I., Faragó, I., Vulkov, L. (eds.) NAA 2016. LNCS, vol. 10187, pp. 227–234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57099-0_23

    Chapter  Google Scholar 

  7. Davidson, A., Tableman, W.: An implementation of a hybrid particle code with a PIC description in r-z and a gridless description in \(\phi \) into OSIRIS. J. Comput. Phys. 281, 1063–1077 (2015)

    Article  MathSciNet  Google Scholar 

  8. Derouillat, J., et al.: SMILEI: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351–373 (2018)

    Article  MathSciNet  Google Scholar 

  9. Lehe, R., et al.: A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm. Comput. Phys. Commun. 203, 66–82 (2016)

    Article  MathSciNet  Google Scholar 

  10. Shalaby, M., et al.: SHARP: a spatially higher-order, relativistic Particle-in-Cell Code. Astrophys. J. 841(1), 52 (2017)

    Article  Google Scholar 

  11. http://warp.lbl.gov/

  12. Wen, M., Chen, M., Lin, J.: Optimizing a particle-in-cell code on Intel knights landing. In: HPC Asia 2018 Proceedings of Workshops of HPC Asia, pp. 71–74 (2018)

    Google Scholar 

  13. Boris, J.P.: Relativistic plasma simulation - optimization of a hybrid code. In: Fourth Conference on numerical Simulation of Plasmas, Washington, pp. 3–67 (1970)

    Google Scholar 

  14. Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, p. 611. Artech House Publishers, Boston (1995)

    MATH  Google Scholar 

  15. Umeda, T., Omura, Y., Tominaga, T., Matsumoto, H.: A new charge conservation method in electromagnetic particle-in-cell simulations. Comput. Phys. Commun. 156(1), 73–85 (2003)

    Article  Google Scholar 

  16. Esirkepov, T.Z.: Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135(2), 144–153 (2001)

    Article  Google Scholar 

  17. Timofeev, I.V., Berendeev, E.A., Dudnikova, G.I.: Simulations of a beam-driven plasma antenna in the regime of plasma transparency. Phys. Plasmas 24(9), 093114 (2017). (1–7)

    Article  Google Scholar 

  18. Barsamian, Y., Charguéraud, A., Hirstoaga, S.A., Mehrenberger, M.: Efficient strict-binning particle-in-cell algorithm for multi-core SIMD processors. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018. LNCS, vol. 11014, pp. 749–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96983-1_53

    Chapter  Google Scholar 

  19. Voevodin, V.V., Zhumatiy, S.A., et al.: Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innovations 6(2), 4–11 (2019)

    Google Scholar 

  20. Nikitenko, D.A., Voevodin, V.V., Zhumatiy, S.A.: Deep analysis of job state statistics on Lomonosov-2 Supercomputer. Supercomput. Front. Innovations 5(2), 4–10 (2018)

    Google Scholar 

  21. Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.: Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first look at Knights Landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 319–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7_25

    Chapter  Google Scholar 

  22. Glinskiy, B.M., Kulikov, I.M., Snytnikov, A.V., Romanenko, A.A., Chernykh, I.G., Vshivkov, V.A.: Co-design of parallel numerical methods for plasma physics and astrophysics. Supercomput. Front. Innovations 1(3), 88–98 (2015)

    Google Scholar 

Download references

Acknowledgements

The work is supported by the RFBR under Grant No. 19-07-00446 and 18-07-00364 and the state errand No. 0315-2019-0009 for ICMMG SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Efimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berendeev, E., Snytnikov, A., Efimova, A. (2019). Performance of the Particle-in-Cell Method with the Intel (Broadwell, KNL) and IBM Power9 Architectures. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2019. Communications in Computer and Information Science, vol 1129. Springer, Cham. https://doi.org/10.1007/978-3-030-36592-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36592-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36591-2

  • Online ISBN: 978-3-030-36592-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics