Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Parallelism on Shared Memory in the QED Particle-in-Cell Code PICADOR with Greedy Load Balancing

  • Conference paper
  • First Online:
Parallel Processing and Applied Mathematics (PPAM 2019)

Abstract

State-of-the-art numerical simulations of laser plasma by means of the Particle-in-Cell method are often extremely computationally intensive. Therefore there is a growing need for the development of approaches for the efficient utilization of resources of modern supercomputers. In this paper, we address the problem of a substantially non-uniform and dynamically varying distribution of macroparticles in simulations of quantum electrodynamic (QED) cascades. We propose and evaluate a load balancing scheme for shared memory systems, which allows subdividing individual cells of the computational domain into work portions with the subsequent dynamic distribution of these portions among OpenMP threads. Computational experiments in 1D, 2D, and 3D QED simulations show that the proposed scheme outperforms the previously developed standard and custom schemes in the PICADOR code by 2.1 to 10 times when employing several Intel Cascade Lake CPUs.

The work was funded by Russian Foundation for Basic Research and the government of the Nizhny Novgorod region of the Russian Federation, grant No. 18-47-520001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dawson, J.: Particle simulation of plasmas. Rev. Mod. Phys. 55, 403 (1983). https://doi.org/10.1103/RevModPhys.55.403

    Article  Google Scholar 

  2. Elkina, N.V., et al.: QED cascades induced by circularly polarized laser fields. Phys. Rev. Spec. Top. Accel. Beams 14, 054401 (2011). https://doi.org/10.1103/PhysRevSTAB.14.054401

    Article  Google Scholar 

  3. Sokolov, I., et al.: Numerical modeling of radiation-dominated and quantum electrodynamically strong regimes of laser-plasma interaction. Phys. Plasmas 18, 093109 (2011). https://doi.org/10.1364/OE.16.002109

    Article  Google Scholar 

  4. Ridgers, C.P., et al.: Modelling gamma-ray photon emission and pair production in highintensity laser-matter interactions. J. Comput. Phys. 260, 273 (2014). https://doi.org/10.1016/j.jcp.2013.12.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Grismayer, T., et al.: Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas 23, 056706 (2016). https://doi.org/10.1063/1.4950841

    Article  Google Scholar 

  6. Gonoskov, A., et al.: Ultrabright GeV photon source via controlled electromagnetic cascades in laser-dipole waves. Phys. Rev. X 7, 041003 (2017). https://doi.org/10.1103/PhysRevX.7.041003

    Article  Google Scholar 

  7. Efimenko, E.S., et al.: Laser-driven plasma pinching in e-e+ cascade. Phys. Rev. E 99, 031201(R) (2019). https://doi.org/10.1103/PhysRevE.99.031201

    Article  Google Scholar 

  8. Tamburini, M., Di Piazza, A., Keitel, C.H.: Laser-pulse-shape control of seeded QED cascades. Sci. Rep. 7(1), 5694 (2017)

    Article  Google Scholar 

  9. Samsonov, A.S., Nerush, E.N., Kostyukov, I.Y.: QED cascade in a plane electromagnetic wave. arXiv preprint arXiv:1809.06115 (2018)

  10. Brady, C.S., Arber, T.D.: An ion acceleration mechanism in laser illuminated targets with internal electron density structure. Plasma Phys. Controlled Fusion 53(1), 015001 (2011). https://doi.org/10.1088/0741-3335/53/1/015001

    Article  Google Scholar 

  11. Fonseca, R.A., et al.: OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 342–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47789-6_36

    Chapter  Google Scholar 

  12. Bussmann, M., et al.: Radiative signatures of the relativistic Kelvin-Helmholtz instability. In: SC 2013. ACM, New York (2013). https://doi.org/10.1145/2503210.2504564

  13. Derouillat, J., et al.: SMILEI: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351–373 (2018). https://doi.org/10.1016/j.cpc.2017.09.024

    Article  MathSciNet  Google Scholar 

  14. Pukhov, A.: Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61(3), 425–433 (1999). https://doi.org/10.1017/S0022377899007515

    Article  Google Scholar 

  15. Bowers, K.J., et al.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15(5), 055703 (2008). https://doi.org/10.1063/1.2840133

    Article  Google Scholar 

  16. Friedman, A., et al.: Computational methods in the warp code framework for kinetic simulations of particle beams and plasmas. IEEE Trans. Plasma Sci. 42(5), 1321–1334 (2014). https://doi.org/10.1109/TPS.2014.2308546

    Article  Google Scholar 

  17. Surmin, I.A., et al.: Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016). https://doi.org/10.1016/j.cpc.2016.02.004

    Article  Google Scholar 

  18. Gonoskov, A., et al.: Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015). https://doi.org/10.1103/PhysRevE.92.023305

    Article  Google Scholar 

  19. Fonseca, R.A.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Controlled Fusion 55(12), 124011 (2013). https://doi.org/10.1088/0741-3335/55/12/124011

    Article  Google Scholar 

  20. Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014). https://doi.org/10.1016/j.cpc.2013.10.013

    Article  MathSciNet  Google Scholar 

  21. Germaschewski, K., et al.: The Plasma Simulation Code: a modern particle-in-cell code with patch-based load-balancing. J. Comput. Phys. 318(1), 305–326 (2016). https://doi.org/10.1016/j.jcp.2016.05.013

    Article  MathSciNet  MATH  Google Scholar 

  22. Beck, A., et al.: Load management strategy for Particle-In-Cell simulations in high energy physics. Nucl. Instrum. Methods Phys. Res. A 829(1), 418–421 (2016)

    Article  Google Scholar 

  23. Vay, J.-L., Haber, I., Godfrey, B.B.: A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys. 243(15), 260–268 (2013). https://doi.org/10.1016/j.jcp.2013.03.010

    Article  MathSciNet  MATH  Google Scholar 

  24. Surmin, I., Bashinov, A., Bastrakov, S., Efimenko, E., Gonoskov, A., Meyerov, I.: Dynamic load balancing based on rectilinear partitioning in particle-in-cell plasma simulation. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 107–119. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_12

    Chapter  Google Scholar 

  25. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Future Gener. Comput. Syst. 17, 755–765 (2001). https://doi.org/10.1016/S0167-739X(00)00058-3

    Article  MATH  Google Scholar 

  26. Vshivkov, V.A., Kraeva, M.A., Malyshkin, V.E.: Parallel implementation of the particle-in-cell method. Program. Comput. Softw. 23(2), 87–97 (1997)

    Google Scholar 

  27. Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.: Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first look at Knights Landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 319–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7_25

    Chapter  Google Scholar 

  28. Vranic, M., Grismayer, T., Martins, J.L., Fonseca, R.A., Silva, L.O.: Particle merging algorithm for PIC codes. Comput. Phys. Commun. 191, 65–73 (2015). https://doi.org/10.1016/j.cpc.2015.01.020

    Article  MathSciNet  MATH  Google Scholar 

  29. Larin, A., et al.: Load balancing for particle-in-cell plasma simulation on multicore systems. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 145–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78024-5_14

    Chapter  Google Scholar 

  30. Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. The Artech House Antennas and Propagation Library. Artech House Inc., Boston (2005)

    MATH  Google Scholar 

  31. Vay, J.-L., et al.: Simulating relativistic beam and plasma systems using an optimal boosted frame. J. Phys. Conf. Ser. 180(1), 012006 (2009). https://doi.org/10.1088/1742-6596/180/1/012006

    Article  Google Scholar 

  32. Nerush, E.N., et al.: Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett. 106, 035001 (2011). https://doi.org/10.1103/PhysRevLett.106.035001

    Article  Google Scholar 

  33. Bell, A.R., Kirk, J.G.: Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008). https://doi.org/10.1103/PhysRevLett.101.200403

    Article  Google Scholar 

  34. Vranic, M., Grismayer, T., Fonseca, R.A., Silva, L.O.: Electron-positron cascades in multiple-laser optical traps. Plasma Phys. Controlled Fusion 59, 014040 (2016). https://doi.org/10.1088/0741-3335/59/1/014040

    Article  Google Scholar 

  35. Efimenko, E.S., et al.: Extreme plasma states in laser-governed vacuum breakdown. Sci. Rep. 8, 2329 (2018)

    Article  Google Scholar 

  36. Bashinov, A.V., et al.: Particle dynamics and spatial e-e+ density structures at QED cascading in circularly polarized standing waves. Phys. Rev. A 95, 042127 (2017). https://doi.org/10.1103/PhysRevA.95.042127

    Article  Google Scholar 

  37. Jirka, M., et al.: Electron dynamics and \(\gamma \) and e-e+ production by colliding laser pulses. Phys. Rev. E 93, 023207 (2016). https://doi.org/10.1103/PhysRevE.93.023207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Meyerov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyerov, I. et al. (2020). Exploiting Parallelism on Shared Memory in the QED Particle-in-Cell Code PICADOR with Greedy Load Balancing. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43229-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43228-7

  • Online ISBN: 978-3-030-43229-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics