Abstract
State-of-the-art numerical simulations of laser plasma by means of the Particle-in-Cell method are often extremely computationally intensive. Therefore there is a growing need for the development of approaches for the efficient utilization of resources of modern supercomputers. In this paper, we address the problem of a substantially non-uniform and dynamically varying distribution of macroparticles in simulations of quantum electrodynamic (QED) cascades. We propose and evaluate a load balancing scheme for shared memory systems, which allows subdividing individual cells of the computational domain into work portions with the subsequent dynamic distribution of these portions among OpenMP threads. Computational experiments in 1D, 2D, and 3D QED simulations show that the proposed scheme outperforms the previously developed standard and custom schemes in the PICADOR code by 2.1 to 10 times when employing several Intel Cascade Lake CPUs.
The work was funded by Russian Foundation for Basic Research and the government of the Nizhny Novgorod region of the Russian Federation, grant No. 18-47-520001.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dawson, J.: Particle simulation of plasmas. Rev. Mod. Phys. 55, 403 (1983). https://doi.org/10.1103/RevModPhys.55.403
Elkina, N.V., et al.: QED cascades induced by circularly polarized laser fields. Phys. Rev. Spec. Top. Accel. Beams 14, 054401 (2011). https://doi.org/10.1103/PhysRevSTAB.14.054401
Sokolov, I., et al.: Numerical modeling of radiation-dominated and quantum electrodynamically strong regimes of laser-plasma interaction. Phys. Plasmas 18, 093109 (2011). https://doi.org/10.1364/OE.16.002109
Ridgers, C.P., et al.: Modelling gamma-ray photon emission and pair production in highintensity laser-matter interactions. J. Comput. Phys. 260, 273 (2014). https://doi.org/10.1016/j.jcp.2013.12.007
Grismayer, T., et al.: Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses. Phys. Plasmas 23, 056706 (2016). https://doi.org/10.1063/1.4950841
Gonoskov, A., et al.: Ultrabright GeV photon source via controlled electromagnetic cascades in laser-dipole waves. Phys. Rev. X 7, 041003 (2017). https://doi.org/10.1103/PhysRevX.7.041003
Efimenko, E.S., et al.: Laser-driven plasma pinching in e-e+ cascade. Phys. Rev. E 99, 031201(R) (2019). https://doi.org/10.1103/PhysRevE.99.031201
Tamburini, M., Di Piazza, A., Keitel, C.H.: Laser-pulse-shape control of seeded QED cascades. Sci. Rep. 7(1), 5694 (2017)
Samsonov, A.S., Nerush, E.N., Kostyukov, I.Y.: QED cascade in a plane electromagnetic wave. arXiv preprint arXiv:1809.06115 (2018)
Brady, C.S., Arber, T.D.: An ion acceleration mechanism in laser illuminated targets with internal electron density structure. Plasma Phys. Controlled Fusion 53(1), 015001 (2011). https://doi.org/10.1088/0741-3335/53/1/015001
Fonseca, R.A., et al.: OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 342–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47789-6_36
Bussmann, M., et al.: Radiative signatures of the relativistic Kelvin-Helmholtz instability. In: SC 2013. ACM, New York (2013). https://doi.org/10.1145/2503210.2504564
Derouillat, J., et al.: SMILEI: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351–373 (2018). https://doi.org/10.1016/j.cpc.2017.09.024
Pukhov, A.: Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61(3), 425–433 (1999). https://doi.org/10.1017/S0022377899007515
Bowers, K.J., et al.: Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation. Phys. Plasmas 15(5), 055703 (2008). https://doi.org/10.1063/1.2840133
Friedman, A., et al.: Computational methods in the warp code framework for kinetic simulations of particle beams and plasmas. IEEE Trans. Plasma Sci. 42(5), 1321–1334 (2014). https://doi.org/10.1109/TPS.2014.2308546
Surmin, I.A., et al.: Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors. Comput. Phys. Commun. 202, 204–210 (2016). https://doi.org/10.1016/j.cpc.2016.02.004
Gonoskov, A., et al.: Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305 (2015). https://doi.org/10.1103/PhysRevE.92.023305
Fonseca, R.A.: Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Controlled Fusion 55(12), 124011 (2013). https://doi.org/10.1088/0741-3335/55/12/124011
Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014). https://doi.org/10.1016/j.cpc.2013.10.013
Germaschewski, K., et al.: The Plasma Simulation Code: a modern particle-in-cell code with patch-based load-balancing. J. Comput. Phys. 318(1), 305–326 (2016). https://doi.org/10.1016/j.jcp.2016.05.013
Beck, A., et al.: Load management strategy for Particle-In-Cell simulations in high energy physics. Nucl. Instrum. Methods Phys. Res. A 829(1), 418–421 (2016)
Vay, J.-L., Haber, I., Godfrey, B.B.: A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys. 243(15), 260–268 (2013). https://doi.org/10.1016/j.jcp.2013.03.010
Surmin, I., Bashinov, A., Bastrakov, S., Efimenko, E., Gonoskov, A., Meyerov, I.: Dynamic load balancing based on rectilinear partitioning in particle-in-cell plasma simulation. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 107–119. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7_12
Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Future Gener. Comput. Syst. 17, 755–765 (2001). https://doi.org/10.1016/S0167-739X(00)00058-3
Vshivkov, V.A., Kraeva, M.A., Malyshkin, V.E.: Parallel implementation of the particle-in-cell method. Program. Comput. Softw. 23(2), 87–97 (1997)
Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.: Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first look at Knights Landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 319–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7_25
Vranic, M., Grismayer, T., Martins, J.L., Fonseca, R.A., Silva, L.O.: Particle merging algorithm for PIC codes. Comput. Phys. Commun. 191, 65–73 (2015). https://doi.org/10.1016/j.cpc.2015.01.020
Larin, A., et al.: Load balancing for particle-in-cell plasma simulation on multicore systems. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 145–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78024-5_14
Taflove, A., Hagness, S.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. The Artech House Antennas and Propagation Library. Artech House Inc., Boston (2005)
Vay, J.-L., et al.: Simulating relativistic beam and plasma systems using an optimal boosted frame. J. Phys. Conf. Ser. 180(1), 012006 (2009). https://doi.org/10.1088/1742-6596/180/1/012006
Nerush, E.N., et al.: Laser field absorption in self-generated electron-positron pair plasma. Phys. Rev. Lett. 106, 035001 (2011). https://doi.org/10.1103/PhysRevLett.106.035001
Bell, A.R., Kirk, J.G.: Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008). https://doi.org/10.1103/PhysRevLett.101.200403
Vranic, M., Grismayer, T., Fonseca, R.A., Silva, L.O.: Electron-positron cascades in multiple-laser optical traps. Plasma Phys. Controlled Fusion 59, 014040 (2016). https://doi.org/10.1088/0741-3335/59/1/014040
Efimenko, E.S., et al.: Extreme plasma states in laser-governed vacuum breakdown. Sci. Rep. 8, 2329 (2018)
Bashinov, A.V., et al.: Particle dynamics and spatial e-e+ density structures at QED cascading in circularly polarized standing waves. Phys. Rev. A 95, 042127 (2017). https://doi.org/10.1103/PhysRevA.95.042127
Jirka, M., et al.: Electron dynamics and \(\gamma \) and e-e+ production by colliding laser pulses. Phys. Rev. E 93, 023207 (2016). https://doi.org/10.1103/PhysRevE.93.023207
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Meyerov, I. et al. (2020). Exploiting Parallelism on Shared Memory in the QED Particle-in-Cell Code PICADOR with Greedy Load Balancing. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019. Lecture Notes in Computer Science(), vol 12043. Springer, Cham. https://doi.org/10.1007/978-3-030-43229-4_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-43229-4_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-43228-7
Online ISBN: 978-3-030-43229-4
eBook Packages: Computer ScienceComputer Science (R0)