Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2503210.2504564acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Open access

Radiative signatures of the relativistic Kelvin-Helmholtz instability

Published: 17 November 2013 Publication History

Abstract

We present a particle-in-cell simulation of the relativistic Kelvin-Helmholtz Instability (KHI) that for the first time delivers angularly resolved radiation spectra of the particle dynamics during the formation of the KHI. This enables studying the formation of the KHI with unprecedented spatial, angular and spectral resolution. Our results are of great importance for understanding astrophysical jet formation and comparable plasma phenomena by relating the particle motion observed in the KHI to its radiation signature.
The innovative methods presented here on the implementation of the particle-in-cell algorithm on graphic processing units can be directly adapted to any many-core parallelization of the particle-mesh method. With these methods we see a peak performance of 7.176 PFLOP/s (double-precision) plus 1.449 PFLOP/s (single-precision), an efficiency of 96% when weakly scaling from 1 to 18432 nodes, an efficiency of 68.92% and a speed up of 794 (ideal: 1152) when strongly scaling from 16 to 18432 nodes.

References

[1]
B. S. C. Alex Ramirez. Pedraforca: A first arm + gpu cluster for hpc. http://nvidia.fullviewmedia.com/gtc2013/0319-210E-S3064.html, 2013.
[2]
A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-Wesley Professional, 2001.
[3]
E. P. Alves, T. Grismayer, S. F. Martins, F. Fiuza, R. A. Fonseca, and L. O. Silva. Large-scale magnetic field generation via the kinetic kelvin-helmholtz instability in unmagnetized scenarios. The Astrophysical Journal Letters, 746(2):L14, 2012.
[4]
S. Bastrakov, R. Donchenko, A. Gonoskov, E. Efimenko, A. Malyshev, I. Meyerov, and I. Surmin. Particle-in-cell plasma simulation on heterogeneous cluster systems. Journal of Computational Science, 3(6):474--479, 2012.
[5]
J. Boris. Relativistic plasma simulation-optimization of a hybrid code. In Proceedings of the 4th Conference on Numerical Simulation of Plasmas. Naval Res. Lab., Washington, D.C.., pages 3--67, 1970.
[6]
K. Bowers, B. Albright, B. Bergen, L. Yin, K. Barker, and D. Kerbyson. 0.374 pflop/strillion-particle kinetic modeling of laser plasma interaction on roadrunner. In High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International Conference for, pages 1--11, 2008.
[7]
H. Burau, R. Widera, W. Hoìňig, G Juckeland, A. Debus, T. Kluge, U. Schramm, T. Cowan, R. Sauerbrey, and M. Bussmann. Picongpu: A fully relativistic particle-in-cell code for a gpu cluster. Plasma Science, IEEE Transactions on, 38(10):2831--2839, 2010.
[8]
M. Bussmann. Picongpu. http://picongpu.hzdr.de, 2013.
[9]
I. Chapman, S. Brown, R. Kemp, and N. Walkden. Toroidal velocity shear kelvin-helmholtz instabilities in strongly rotating tokamak plasmas. Nuclear Fusion, 52(4):042005, 2012.
[10]
G. Chen, L. ChacÃ3n, and D. Barnes. An efficient mixed-precision, hybrid cpu-gpu implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm. Journal of Computational Physics, 231(16):5374--5388, 2012.
[11]
M. Chen, E. Esarey, C. G. R. Geddes, C. B. Schroeder, G. R. Plateau, S. S. Bulanov, S. Rykovanov, and W. P. Leemans. Modeling classical and quantum radiation from laser-plasma accelerators. Phys. Rev. ST Accel. Beams, 16:030701, 2013.
[12]
J. M. Dawson. Particle simulation of plasmas. Rev. Mod. Phys., 55:403--447, Apr 1983.
[13]
P. A. Delamere, R. J. Wilson, S. Eriksson, and F. Bagenal. Magnetic signatures of kelvin-helmholtz vortices on saturn's magnetopause: Global survey. Journal of Geophysical Research: Space Physics, 118(1):393, 2013.
[14]
J. Eastwood, W. Arter, N. Brealey, and R. Hockney. Body-fitted electromagnetic pic software for use on parallel computers. Computer Physics Communications, 87(1--2):155--178, 1995.
[15]
J. W. Eastwood. The virtual particle electromagnetic particle-mesh method. Computer Physics Communications, 64(2):252--266, 1991.
[16]
T. Esirkepov. Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Computer Physics Communications, 135(2): 144--153, 2001.
[17]
R. L. Fermo, J. F. Drake, and M. Swisdak. Secondary magnetic islands generated by the kelvin-helmholtz instability in a reconnecting current sheet. Phys. Rev. Lett., 108:255005, 2012.
[18]
F. Fiuza and et al. Record simulations conducted on lawrence livermore supercomputer. https://www.llnl.gov/news/-newsreleases/2013/Mar/NR-13-03-05.html, 2013.
[19]
C. Foullon, E. Verwichte, K. Nykyri, M. J. Aschwanden, and I. G. Hannah. Kelvin-helmholtz instability of the cme reconnection outflow layer in the low corona. The Astrophysical Journal, 767(2):170, 2013.
[20]
J. T. Frederiksen, T. Haugbolle, M. V. Medvedev, and A. Nordlund. Radiation spectral synthesis of relativistic filamentation. The Astrophysical Journal Letters, 722(1):L114, 2010.
[21]
G.-T. GmbH. Vampir and vampir trace. http://-www.vampir.eu/, 2013.
[22]
L. E. H. Godfrey, J. E. J. Lovell, S. Burke-Spolaor, R. Ekers, G. V. Bicknell, M. Birkinshaw, D. M. Worrall, D. L. Jauncey, D. A. Schwartz, H. L. Marshall, J. Gelbord, E. S. Perlman, and M. Georganopoulos. Periodic structure in the megaparsec-scale jet of pks 0637--752. The Astrophysical Journal Letters, 758(2):L27, 2012.
[23]
A. D. Greenwood, K. L. Cartwright, J. W. Luginsland, and E. A. Baca. On the elimination of numerical cerenkov radiation in pic simulations. Journal of Computational Physics, 201(2):665--684, 2004.
[24]
T. Grismayer, E. P. Alves, R. A. Fonseca, and L. O. Silva. dc-magnetic-field generation in unmagnetized shear flows. Phys. Rev. Lett., 111:015005, Jul 2013.
[25]
A. Gruzinov. GRB: magnetic fields, cosmic rays, and emission from first principles? ArXiv e-prints, Mar. 2008.
[26]
T. Haugboelle, J. T. Fredriksen, and A. Nordlund. Photon-Plasma: a modern high-order particle-in-cell code. arXiv, astro-ph.SR:1211.4575, 2012.
[27]
HDF-Group. Hdf5. http://www.hdfgroup.org/HDF5/, 2013.
[28]
R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. Taylor & Francis, 1989.
[29]
W. Hönig, F. Schmitt, R. Widera, H. Burau, G. Juckeland, M. S. Müller, and M. Bussmann. A generic approach for developing highly scalable particle-mesh codes for gpus. In Symposium on Application Accelerators in High-Performance Computing 2012, SAAHC'12, Argonne National Laboratory, pages 1--3, 2012.
[30]
O. A. Hurricane, V. A. Smalyuk, K. Raman, O. Schilling, J. F. Hansen, G. Langstaff, D. Martinez, H.-S. Park, B. A. Remington, H. F. Robey, J. A. Greenough, R. Wallace, C. A. Di Stefano, R. P. Drake, D. Marion, C. M. Krauland, and C. C. Kuranz. Validation of a turbulent kelvin-helmholtz shear layer model using a high-energy-density omega laser experiment. Phys. Rev. Lett., 109:155004, 2012.
[31]
J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, Inc., 1999.
[32]
R. Joseph, G. Ravunnikutty, S. Ranka, E. D'Azevedo, and S. Klasky. Efficient gpu implementation for particle in cell algorithm. In Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages 395--406, 2011.
[33]
X. Kong, M. C. Huang, C. Ren, and V. K. Decyk. Particle-in-cell simulations with charge-conserving current deposition on graphic processing units. Journal of Computational Physics, 230(4):1676--1685, 2011.
[34]
Y. Kuramitsu, Y. Sakawa, S. Dono, C. D. Gregory, S. A. Pikuz, B. Loupias, M. Koenig, J. N. Waugh, N. Woolsey, T. Morita, T. Moritaka, T. Sano, Y. Matsumoto, A. Mizuta, N. Ohnishi, and H. Takabe. Kelvin-helmholtz turbulence associated with collisionless shocks in laser produced plasmas. Phys. Rev. Lett., 108:195004, 2012.
[35]
G. Lapenta, V. Pierrard, R. Keppens, S. Markidis, S. Poedts, O. Šebek, P. M. Trávncek, P. Henri, F. Califano, F. Pegoraro, M. Faganello, V. Olshevsky, A. L. Restante, Å. Nordlund, J. Trier Frederiksen, D. H. Mackay, C. E. Parnell, A. Bemporad, R. Šusino, and K. Borremans. SWIFF: Space weather integrated forecasting framework. Journal of Space Weather and Space Climate, 3(26):A260000, 2013.
[36]
E. Liang, M. Boettcher, and I. Smith. Magnetic field generation and particle energization at relativistic shear boundaries in collisionless electron-positron plasmas. The Astrophysical Journal Letters, 766(2):L19, 2013.
[37]
K. Madduri, E.-J. Im, K. Z. Ibrahim, S. Williams, S. Ethier, and L. Oliker. Gyrokinetic particle-in-cell optimization on emerging multi- and many core platforms. Parallel Computing, 37(9):501--520, 2011.
[38]
P. Mertmann, D. Eremin, T. Mussenbrock, R. P. Brinkmann, and P. Awakowicz. Fine-sorting one-dimensional particle-in-cell algorithm with monte-carlo collisions on a graphics processing unit. Computer Physics Communications, 182(10):2161--2167, 2011.
[39]
J. Moen, K. Oksavik, L. Alfonsi, Y. Daabakk, V. Romano, and L. Spogli. Space weather challenges of the polar cap ionosphere. Journal of Space Weather and Space Climate, 3(26)A260000, 2013.
[40]
U. V. Möstl, M. Temmer, and A. M. Veronig. The kelvin-helmholtz instability at coronal mass ejection boundaries in the solar corona: Observations and 2.5d mhd simulations. The Astrophysical Journal Letters, 766(1):L12, 2013.
[41]
MPI-Forum. Message passing interface standard. http://-www.mpi-forum.org/, 2013.
[42]
K. I. Nishikawa, P. Hardee, B. Zhang, I. Dutan, M. Medvedev, et al. Radiation from accelerated particles in relativistic jets with shocks, shear-flow, and reconnection. arXiv, astro-ph.HE:1303.2569, 2013.
[43]
K.-I. Nishikawa, J. Niemiec, M. Medvedev, B. Zhang, P. Hardee, Y. Mizuno, A. Nordlund, J. Frederiksen, H. Sol, M. Pohl, D. H. Hartmann, and G. J. Fishman. Simulation of relativistic shocks and associated radiation from turbulent magnetic fields. Proceedings of the International Astronomical Union, 6:354--357, 8 2010.
[44]
NVIDIA. Nvidia command line profiler. https://-developer.nvidia.com/nvidia-visual-profiler, 2013.
[45]
NVIDIA. Nvidia cuda. https://developer.nvidia.com/-what-cuda, 2013.
[46]
NVIDIA. Nvidia cuda 5.5 early access. https://-nvdeveloper.nvidia.com, 2013.
[47]
NVIDIA. Nvidia cuda profiling tools interface. https://-developer.nvidia.com/cuda-profiling-tools-interface, 2013.
[48]
NVIDIA. Nvidia cuda programming guide. http://-docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, 2013.
[49]
NVIDIA. Rdma for gpu direct. http://docs.nvidia.com/-cuda/gpudirect-rdma/index.html, 2013.
[50]
ORNL. Titan. http://www.olcf.ornl.gov/titan/, 2013.
[51]
J. Paral and R. Rankin. Dawn-dusk asymmetry in the kelvin-helmholtz instability at mercury. Nature Communications, 4:1645, 2013.
[52]
R. Pausch. Electromagnetic Radiation from Relativistic Electrons as Characteristic Signature of their Dynamics. Master's thesis, Technical University Dresden, Dresden, Germany, 2012.
[53]
P. Ricci and B. N. Rogers. Plasma turbulence in the scrape-off layer of tokamak devices. Physics of Plasmas, 20(1):010702, 2013.
[54]
E. Roediger, R. P. Kraft, M. E. Machacek, W. R. Forman, P. E. J. Nulsen, C. Jones, and S. S. Murray. Irregular sloshing cold fronts in the nearby merging groups ngc 7618 and ugc 12491: Evidence for kelvin-helmholtz instabilities. The Astrophysical Journal, 754(2):147, 2012.
[55]
E. Rutter, M. Grosskopf, G. Malamud, C. Kuranz, E. Harding, P. Keiter, and R. Drake. Comparison between kelvin-helmholtz instability experiments on omega and simulation results using the crash code. High Energy Density Physics, 9(1):148, 2013.
[56]
I. F. Sbalzarini, J. H. Walther, B. Polasek, P. Chatelain, M. Bergdorf, S. E. Hieber, E. M. Kotsalis, and P. Koumoutsakos. A software framework for the portable parallelization of particle-mesh simulations. In in Proceedings of Euro-Par 2006, LNCS 4128, 730--739, 2006.
[57]
F. K. Schinzel, A. P. Lobanov, and J. A. Zensus. The long-term evolution of the parsec scale jet of the quasar 3c345. Journal of Physics: Conference Series, 372(1):012070, 2012.
[58]
N. SECO. Cuda development kit for gpu-accelerated arm-based systems. http://www.nvidia.com/object/seco-dev-kit.html, 2013.
[59]
L. Sironi and A. Spitkovsky. Synthetic spectra from particle-in-cell simulations of relativistic collisionless shocks. The Astrophysical Journal Letters, 707(1):L92, 2009.
[60]
G. Stantchev, W. Dorland, and N. Gumerov. Fast parallel Particle-To-Grid interpolation for plasma PIC simulations on the GPU. Journal of Parallel and Distributed Computing, 68(10):1339--1349, 2008.
[61]
W. Thomson. Hydrokinetic solutions and observations. Philosophical Magazine, 42:362, 1871.
[62]
H. v. Helmholtz. Über discontinuierliche flüssigkeits-bewegungen. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin, 23:215, 1868.
[63]
J.-L. Vay. Simulation of beams or plasmas crossing at relativistic velocity. Physics of Plasmas, 15(5):056701, 2008.
[64]
J. Villasenor and O. Buneman. Rigorous charge conservation for local electromagnetic field solvers. Computer Physics Communications, 69(2--3):306--316, 1992.
[65]
H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda. Mvapich2-gpu: optimized gpu to gpu communication for infiniband clusters. Comput. Sci., 26(3--4):257--266, 2011.
[66]
A. Woods and L. Ludeking. Performance enhancement of magic fdtd-pic plasma-wave simulations using gpu processing. In Plasma Science, 2010 Abstracts IEEE International Conference on, pages 1--1, 2010.
[67]
K. Yee. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation, IEEE Transactions on, 14(3):302--307, 1966.
[68]
W. Zhang, A. MacFadyen, and P. Wang. Three-dimensional relativistic magnetohydrodynamic simulations of the kelvin-helmholtz instability: Magnetic field amplification by a turbulent dynamo. The Astrophysical Journal Letters, 692(1):L40, 2009.

Cited By

View all
  • (2024)Plasmonic Excitations in Carbon Nanotubes: PIC simulations vs Hydrodynamic ModelComputational Fluid Dynamics - Analysis, Simulations, and Applications [Working Title]10.5772/intechopen.1006820Online publication date: 27-Sep-2024
  • (2024)EARLY STAGE OF THE ELECTROMAGNETIC BEAM NONLINEAR INTERACTION WITH THE DENSE PLASMA LAYERProblems of Atomic Science and Technology10.46813/2024-154-031(31-35)Online publication date: 9-Dec-2024
  • (2024)Recent development of fully kinetic particle-in-cell method and its application to fusion plasma instability studyFrontiers in Physics10.3389/fphy.2024.134073612Online publication date: 18-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SC '13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
November 2013
1123 pages
ISBN:9781450323789
DOI:10.1145/2503210
  • General Chair:
  • William Gropp,
  • Program Chair:
  • Satoshi Matsuoka
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 November 2013

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SC13
Sponsor:

Acceptance Rates

SC '13 Paper Acceptance Rate 91 of 449 submissions, 20%;
Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)235
  • Downloads (Last 6 weeks)36
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Plasmonic Excitations in Carbon Nanotubes: PIC simulations vs Hydrodynamic ModelComputational Fluid Dynamics - Analysis, Simulations, and Applications [Working Title]10.5772/intechopen.1006820Online publication date: 27-Sep-2024
  • (2024)EARLY STAGE OF THE ELECTROMAGNETIC BEAM NONLINEAR INTERACTION WITH THE DENSE PLASMA LAYERProblems of Atomic Science and Technology10.46813/2024-154-031(31-35)Online publication date: 9-Dec-2024
  • (2024)Recent development of fully kinetic particle-in-cell method and its application to fusion plasma instability studyFrontiers in Physics10.3389/fphy.2024.134073612Online publication date: 18-Jan-2024
  • (2024)Application-Driven Exascale: The JUPITER Benchmark SuiteProceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis10.1109/SC41406.2024.00038(1-45)Online publication date: 17-Nov-2024
  • (2024)Visualizing plasmons and ultrafast kinetic instabilities in laser-driven solids using X-ray scatteringCommunications Physics10.1038/s42005-024-01776-67:1Online publication date: 3-Sep-2024
  • (2024)Laser-driven high-energy proton beams from cascaded acceleration regimesNature Physics10.1038/s41567-024-02505-020:7(1211-1216)Online publication date: 13-May-2024
  • (2024)Revealing the three-dimensional structure of microbunched plasma-wakefield-accelerated electron beamsNature Photonics10.1038/s41566-024-01475-218:9(952-959)Online publication date: 15-Jul-2024
  • (2024)Explicit energy-conserving modification of relativistic PIC methodJournal of Computational Physics10.1016/j.jcp.2024.112820502:COnline publication date: 1-Apr-2024
  • (2024)Developing Performance Portable Plasma Edge Simulations: A SurveyComputer Physics Communications10.1016/j.cpc.2024.109123(109123)Online publication date: Feb-2024
  • (2024)A performance portable implementation of the semi-Lagrangian algorithm in six dimensionsComputer Physics Communications10.1016/j.cpc.2023.108973295(108973)Online publication date: Feb-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media