Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Speeded Up Elevation Map for Exploration of Large-Scale Subterranean Environments

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2019)

Abstract

In this paper, we address a problem of the exploration of large-scale subterranean environments using autonomous ground mobile robots. In particular, we focus on an efficient data representation of the large-scale elevation map, where it is desirable to capture the shape of the terrain to avoid areas not traversable by a robot. Subterranean environments such as mine tunnel systems can be in units of kilometers large, but only a relatively small portion of the environment represents observable parts. Therefore, uniform grid-based elevation maps with resolution in units of centimeters are not memory efficient, and more suitable are hierarchical tree-based structures. However, hierarchical structures suffer from the increased computational requirements of accessing particular grid cells needed in determination of the navigational goals or evaluation of the terrain traversability in planning safe and cost-efficient paths. We propose a speed-up technique to combine the benefits of uniform grid-based and tree-based representations. The proposed elevation map representation keeps the memory footprint low using tree structure but enables fast access to the grid cells corresponding to the robot surroundings. The efficiency of the proposed data representation is demonstrated in an experimental deployment of the autonomous exploration of outdoor and subterranean environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amigoni, F., Banfi, J., Basilico, N.: Multirobot exploration of communication-restricted environments: a survey. IEEE Intell. Syst. 32(6), 48–57 (2017). https://doi.org/10.1109/MIS.2017.4531226

    Article  Google Scholar 

  2. Bayer, J., Faigl, J.: On autonomous spatial exploration with small hexapod walking robot using tracking camera Intel RealSense T265. In: European Conference on Mobile Robots (ECMR) (2019)

    Google Scholar 

  3. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  4. Carrillo, H., Dames, P., Kumar, V., Castellanos, J.A.: Autonomous robotic exploration using occupancy grid maps and graph SLAM based on Shannon and Rényi entropy. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 487–494 (2015). https://doi.org/10.1109/ICRA.2015.7139224

  5. Chung, T.: DARPA Subterranean (SubT) Challenge. https://www.darpa.mil/program/darpa-subterranean-challenge. Accessed 12 July 2019

  6. Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)

    Article  Google Scholar 

  7. Faigl, J., Čížek, P.: Adaptive locomotion control of hexapod walking robot for traversing rough terrains with position feedback only. Robot. Auton. Syst. 116, 136–147 (2019). https://doi.org/10.1016/j.robot.2019.03.008

    Article  Google Scholar 

  8. Faigl, J., Kulich, M.: On benchmarking of frontier-based multi-robot exploration strategies. In: European Conference on Mobile Robots (ECMR), pp. 1–8 (2015). https://doi.org/10.1109/ECMR.2015.7324183

  9. Fankhauser, P., Bloesch, M., Hutter, M.: Probabilistic terrain mapping for mobile robots with uncertain localization. IEEE Robot. Autom. Lett. 3(4), 3019–3026 (2018). https://doi.org/10.1109/LRA.2018.2849506

    Article  Google Scholar 

  10. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Theory Comput. 8, 415–428 (2012)

    Article  MathSciNet  Google Scholar 

  11. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot. Sci. Syst. (RSS) 61(12), 1258–1276 (2013). https://doi.org/10.1016/j.robot.2013.09.004

    Article  Google Scholar 

  12. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots 34(3), 189–206 (2013). https://doi.org/10.1007/s10514-012-9321-0

    Article  Google Scholar 

  13. Intel RealSense Depth Camera D435. https://click.intel.com/intelr-realsensetm-depth-camera-d435.html. Accessed 4 Aug 2018

  14. Intel RealSense Tracking Camera T265. https://click.intel.com/order-intel-realsense-tracking-camera-t265.html. Accessed 23 May 2019

  15. Kraetzschmar, G.K., Gassull, G.P., Uhl, K.: Probabilistic quadtrees for variable-resolution mapping of large environments. IFAC Proc. vol. 37(8), 675–680 (2004). https://doi.org/10.1016/S1474-6670(17)32056-6

    Article  Google Scholar 

  16. Kulich, M., Faigl, J., Přeučil, L.: On distance utility in the exploration task. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4455–4460 (2011). https://doi.org/10.1109/ICRA.2011.5980221

  17. Liu, Y., Nejat, G.: Robotic urban search and rescue: a survey from the control perspective. J. Intell. Robot. Syst. 72(2), 147–165 (2013). https://doi.org/10.1007/s10846-013-9822-x

    Article  Google Scholar 

  18. Micro tactical ground robot. http://www.robo-team.com/products/mtgr/. Accessed 11 July 2019

  19. Peter Wells, D.D.: TALON: a universal unmanned ground vehicle platform, enabling the mission to be the focus. In: SPIE, vol. 5804 (2005). https://doi.org/10.1117/12.602887

  20. Pfaff, P., Triebel, R., Burgard, W.: An efficient extension to elevation maps for outdoor terrain mapping and loop closing. Int. J. Robot. Res. 26, 217–230 (2007). https://doi.org/10.1177/0278364906075165

    Article  Google Scholar 

  21. Prágr, M., Čížek, P., Bayer, J., Faigl, J.: Online incremental learning of the terrain traversal cost in autonomous exploration. In: Robotics: Science and Systems (RSS) (2019). https://doi.org/10.15607/RSS.2019.XV.040

  22. Quattrini Li, A., Cipolleschi, R., Giusto, M., Amigoni, F.: A semantically-informed multirobot system for exploration of relevant areas in search and rescue settings. Auton. Robots 40(4), 581–597 (2015). https://doi.org/10.1007/s10514-015-9480-x

    Article  Google Scholar 

  23. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  24. Roth-Tabak, Y., Jain, R.: Building an environment model using depth information. Computer 22(6), 85–90 (1989). https://doi.org/10.1109/2.30724

    Article  Google Scholar 

  25. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp. 146–151 (1997). https://doi.org/10.1109/CIRA.1997.613851

  26. Yanguas-Rojas, D., Mojica-Nava, E.: Exploration with heterogeneous robots networks for search and rescue. IFAC PapersOnLine 50(1), 7935–7940 (2017). https://doi.org/10.1016/j.ifacol.2017.08.768

    Article  Google Scholar 

Download references

Acknowledgement

The presented work has been supported under the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”. The support under grant No. SGS19/176/OHK3/3T/13 to Jan Bayer is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bayer, J., Faigl, J. (2020). Speeded Up Elevation Map for Exploration of Large-Scale Subterranean Environments. In: Mazal, J., Fagiolini, A., Vasik, P. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science(), vol 11995. Springer, Cham. https://doi.org/10.1007/978-3-030-43890-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43890-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43889-0

  • Online ISBN: 978-3-030-43890-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics