Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robotic Urban Search and Rescue: A Survey from the Control Perspective

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Robotic urban search and rescue (USAR) is a challenging yet promising research area which has significant application potentials as has been seen during the rescue and recovery operations of recent disaster events. To date, the majority of rescue robots used in the field are teleoperated. In order to minimize a robot operator’s workload in time-critical disaster scenes, recent efforts have been made to equip these robots with some level of autonomy. This paper provides a detailed overview of developments in the exciting and challenging area of robotic control for USAR environments. In particular, we discuss the efforts that have been made in the literature towards: 1) developing low-level controllers for rescue robot autonomy in traversing uneven terrain and stairs, and perception-based simultaneous localization and mapping (SLAM) algorithms for developing 3D maps of USAR scenes, 2) task sharing of multiple tasks between operator and robot via semi-autonomous control, and 3) high-level control schemes that have been designed for multi-robot rescue teams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Murphy, R.: Activities of rescue robots at the world trade center from 11–21 September 2001. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)

    Article  Google Scholar 

  2. Murphy, R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., Erkmen, A.: Search and rescue robotics. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1151–1173. Springer, Berlin (2008)

    Chapter  Google Scholar 

  3. Guizzo, E.: Japan earthquake: Robots help search for survivors. IEEE Spectrum (2011). URL http://spectrum.ieee.org/automaton/robotics/industrial-robots/japan-earthquake-robots-help-search-for-survivors

  4. Guizzo, E.: Japan earthquake: more robots to the rescue. IEEE Spectrum (2011). URL http://spectrum.ieee.org/automaton/robotics/industrial-robots/japan-earthquakemore-robots-to-the-rescue

    Google Scholar 

  5. Casper, J., Micire, M., Murphy, R.: Issues in intelligent robots for search and rescue. In: Proceedings of SPIE, pp. 292–302 (2000)

  6. Casper, J., Murphy, R.: Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Trans. Syst. Man Cybern. Part B 33(3), 367–385 (2003)

    Article  Google Scholar 

  7. Burke, J., Murphy, R., Coovert, M., Riddle, D.: Moonlight in Miami: a field study of human-robot interaction in the context of an urban search and rescue disaster response training exercise. Hum. Comput. Interact. 19, 85–116 (2004)

    Article  Google Scholar 

  8. Nordqvist, C.: 9/11 ten years on -the health effects on rescue workers. Medical News Today (2011). URL http://www.medicalnewstoday.com/articles/234030.php

  9. Chief: Problems and symptoms that a rescue worker may experience thru helping. Rescue Workers (2001). URL http://www.rescue-workers.com/problems.html

  10. Mourikis, A., Trawny, N., Roumeliotis, S., Helmick, D., Matthies, L.: Autonomous stair climbing for tracked vehicles. Int. J. Robot. Res. 26(7), 737–758 (2007)

    Article  Google Scholar 

  11. Steplight, S., Egnal, G., Jung, S., Walker, D., Taylor, C., Ostrowski, J.: A mode-based sensor fusion approach to robotic stair-climbing. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1113–1118 (2000)

  12. Okada, Y., Nagatani, K., Yoshida, K., Tadokoro, S., Yoshida, T., Koyanagi, E.: Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J. Field Robot. 28(6), 875–893 (2011)

    Article  Google Scholar 

  13. iRobot: User assist package for iRobot 510 Packbot (2012). URL http://www.irobot.com/~/media/Files/Robots/Defense/PackBot/iRobot-PackbotUAP.ashx

  14. Liu, Y., Liu, G.: Track-stair interaction analysis and online tip-over prediction for a self-reconfigurable tracked mobile robot climbing stairs. IEEE/ASME Trans. Mech. 14(5), 528–538 (2009)

    Article  Google Scholar 

  15. Liu, Y., Liu, G.: Interaction analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes. IEEE/ASME Trans. Mech. 15(4), 623–635 (2010)

    Article  Google Scholar 

  16. Ellekilde, L.-P., Huang, S., Miro, J.V., Dissanayake, G.: Dense 3-D map construction for indoor search and rescue. J. Field Robot. 24(1/2), 71–89 (2007)

    Article  Google Scholar 

  17. Yokokohji, Y., Kurisu, M., Takao, S., Kudo, Y., Hayashi, K., Yoshikawa, T.: Constructing a 3-D map of rubble by teleoperated mobile robots with a motion cancelling camera system. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3118–3125 (2003)

  18. Kurisu, M., Muroi, H., Yokokohji, Y., Kuwahara, H.: Development of a laser range finder for 3D map-building in rubble—installation in a rescue robot. In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 2054–2059 (2007)

  19. Zhang, Z., Nejat, G., Guo, H., Huang, P.: A novel 3D sensory system for robot-assisted mapping of cluttered urban search and rescue environments. Intell. Serv. Robot. 4, 119–134 (2011)

    Article  Google Scholar 

  20. Pfingsthorn, M., Slamet, B., Visser, A.: A scalable hybrid multi-robot SLAM method for highly detailed maps. In: RoboCup 2007: Robot Soccer World Cup XI, pp. 457–464. Springer Verlag, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Bruemmer, D., Boring, R., Few, D., Marble, J., Walton, M.: I call shotgun!: an evaluation of mixed-initiative control for novice users of a search and rescue robot. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 2847–2852 (2004)

  22. Murphy, R., Sprouse, J.: Strategies for searching an area with emi-autonomous mobile robots. In: Proceedings of Robotics for Challenging Environments, pp. 15–21 (1996)

  23. Finzi, A., Orlandini, A.: Human-robot interaction through mixed-initiative planning for rescue and search rovers. In: Bandini, S., Manzoni, S. (eds.) Springer Advances in Artificial Intelligence, vol. 3673, pp. 483–494. Springer, Berlin/Heidlberg (2005)

    Google Scholar 

  24. Wegner, R.W., Anderson, J.: An-agent based support for balancing teleoperation and autonomy in urban search and rescue. Int. J. Robot. Autom. 21(2), 120–128 (2006)

    Google Scholar 

  25. Doroodgar, B., Ficocelli, M., Mobedi, B., Nejat, G.: The search for survivors: cooperative human-robot interaction in search and rescue environments using semi-autonomous robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2858–2863 (2010)

  26. Doroodgar, B., Nejat, G.: A hierarchical reinforcement learning based control architecture for semi-autonomous rescue robots in cluttered environments. In: Proceedings on IEEE International Conference on Automation Science Engineering, pp. 948–953 (2010)

  27. Liu, Y., Nejat, G., Doroodgar, B.: Learning based semi-autonomous control for robots in urban search and rescue. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics (2012)

  28. Doroodgar, B.: A learning-based semi-autonomous control architecture for robotic exploration of search and rescue environments. Master’s thesis, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada (2011)

  29. Cavallin, K., Svensson, P.: Semi-autonomous teleoperated search and rescue robot. Master’s thesis, Department of Computing Science, Umea University, Sweden (2009)

  30. Velagapudi, P., Scerri, P., Sycara, K., Wang, H., Lewis, M., Wang, J.: Scaling effects in multi-robot control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2121–2126 (2008)

  31. Sato, N., Matsuno, F., Yamasaki, T., Kamegawa, T., Shiroma, N., Igarashi, H.: Cooperative task execution by a multiple robot team and its operators in search and rescue operations. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1083–1088 (2004)

  32. Lewis, M., Wang, H., Chien, S., Scerri, P., Velagapudi, P., Sycara, K., Kane, B.: Teams organization and performance in multi-human/multi-robot teams. In: Proceedings of IEEE International Conference on Systems Man and Cybernetics, pp. 1617–1623 (2010)

  33. Kleiner, A., Dornhege, C., Sun, D.: Mapping disaster areas jointly: RFID-coordinated SLAM by humans and Robots. In: Proceedings of IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 1–6 (2007)

  34. Hsieh, M., Cowley, A., Keller, J., Chaimowicz, L., Grocholsky, B., Kumar, V., Taylor, C., Endo, Y., Arkin, R., Jung, B., Wolf, D., Sukhatme, G., Mackenzie, D.: Adaptive teams of autonomous aerial and ground robots for situation awareness. J. Field Robot. 24(11), 991–1014 (2007)

    Article  Google Scholar 

  35. Luo, C., Espinosa, A., Pranantha, D., Gloria, A.: Multi-robot search and rescue team. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics, pp. 296–301 (2011)

  36. Payton, D., Estkowski, R., Howard, M.: Pheromone robotics and the logic of virtual pheromones. In: Sahin, E., Spears, W. (eds.) Swarm Robotics WS2004 (LNCS), vol. 3342, pp. 45–57. Springer Verlag, Berlin, Heidelberg (2005)

    Chapter  Google Scholar 

  37. Couceiro, M., Rocha, R., Ferreira, N.: A novel multi-robot exploration approach based on particle swarm optimization algorithms. In: Proceedings of IEEE International Symposium on Safety, Security and Rescue Robotics, pp. 327–332 (2011)

  38. Balakirsky, S., Carpin, S., Kleiner, A., Lewis, M., Visser, A., Wang, J., Ziparo, V.: Towards heterogeneous robot teams for disaster mitigation: results and performance metrics from robocup rescue. J. Field Robot. 24(11), 943–967 (2007)

    Article  Google Scholar 

  39. de Hoog, J., Cameron, S., Visser, A.: Dynamic team hierarchies in communication-limited multi-robot exploration. In: Proceedings of IEEE International Workshop on Safety Security and Rescue Robotics, pp. 1–7 (2010)

  40. Meuth, R., Saad, E., Wunsch, D., Vian, J.: Adaptive task allocation for search area coverage. In: Proceedings of IEEE International Conference on Technologies for Practical Robot Applications, pp. 67–74 (2009)

  41. Nourbakhsh, I., Sycara, K., Koes, N., Yong, M., Lewis, M., Burion, S.: Human-robot teaming for search and rescue. In: Pervasive Computing, pp. 72–78 (2005)

  42. Wong, C., Seet, G., Sim, S.: Multiple-robot systems for USAR: key design attributes and deployment issues. Int. J. Adv. Robot. Syst. 8(1), 85–101 (2011)

    Google Scholar 

  43. Hsieh, M., Cowley, A., Kumar, V., Tayloar, C.: Maintaining network connectivity and performance in robot teams. J. Field Robot. 25(1), 111–131 (2008)

    Article  Google Scholar 

  44. Tardioli, D., Mosteo, A., Riazuelo, L., Villarroel, J., Montano, L.: Enforcing network connectivity in robot team missions. Int. J. Robot. Res. 29(4), 460–480 (2010)

    Article  Google Scholar 

  45. Woods, D., Tittle, J., Feil, M., Roesler, A.: Envisioning human-robot coordination in future operations. IEEE Trans. Syst. Man Cybern. Part C 34(2), 210–218 (2004)

    Article  Google Scholar 

  46. Murphy, R., Casper, J., Hyams, J., Micire, M., Minten, B.: Mobility and sensing demands in USAR. In: Proceedings of 26th Annual Conference of IEEE Industrial Electronics Society, pp. 138–142 (2000)

  47. Casper, J., Murphy, R.: Workflow study on human-robot interaction in USAR. In: Proceedings in IEEE International Conference on Robotics and Automation, pp. 1997–2003 (2002)

  48. Crandall, J., Goodrich, M.: Characterizing the efficiency of human robot interaction: a case study of shared-control teleoperation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1290–1295 (2002)

  49. Shen, J., Ibanez-Guzman, J., Ng, T., Chew, B.: A collaborative-shared control system with safe obstacle avoidance capability. In: Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, pp. 119–123 (2004)

  50. Perrin, X., Chavarriaga, R., Colas, F., Siegward, R., Millan, J.: Brain-coupled interaction for semi-autonomous navigation of an assistive robot. Robot. Auton. Syst. 58(12), 1246–1255 (2010)

    Article  Google Scholar 

  51. Law, C., Xu, Y.: Shared control for navigation and balance of a dynamically stable robot. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1985–1990 (2002)

  52. Tang, H., Cao, X., Song, A., Guo, Y., Bao, J.: Human-robot collaborative teleoperation system for semi-autonomous reconnaissance robot. In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 1934–1939 (2009)

  53. Goodrich, M., Olsen, J.D., Crandall, J., Palmer, T.: Experiments in adjustable autonomy. Tech. rep., Computer Science Department, Brigham Young University (2001). URL http://faculty.cs.byu.edu/mike/mikeg/papers/IJCAI01.pdf

  54. Marble, J., Bruemmer, D., Few, D.: Lessons learned from usability tests with a collaborative cognitive workspace for human-robot teams. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 448–453 (2003)

  55. Yu, H., Liu, S., Liu, J.: A new navigation method based on reinforcement learning and rough sets. In: Proceedings of International Conference on Machine Learning and Cybernetics, pp. 1093–1098 (2008)

  56. Watkins, C.: Learning from delayed rewards. Ph.D. thesis, Cambridge University, Cambridge, UK (1989)

  57. Jeni, L., Istenes, Z., Szemes, P., Hashimoto, H.: Robot navigation framework based on reinforcement learning for intelligent space. In: Proceedings of International Conference on Human System Interactions, pp. 761–766 (2008)

  58. Dietterich, D.: Hierarchical reinforcement learning with MAXQ value function decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)

    MathSciNet  MATH  Google Scholar 

  59. Makar, R., Mahadevan, S., Ghavamzadeh, M.: Hierarchical multi-agent reinforcement learning. In: Proceedings of International Conference on Autonomous Agents, pp. 246–253 (2001)

  60. Stone, P., Sutton, R.: Scaling reinforcement learning toward robocup soccer. In: Proceedings of International Conference on Machine Learning, pp. 537–544 (2001)

  61. Voyles, R., Choset, H.: Editorial: search and rescue robots. J. Field Robot. 25(1), 1–2 (2008)

    Article  Google Scholar 

  62. Wang, J., Lewis, M., Gennari, J.: A game engine based simulation of the NIST urban search and rescue arenas. In: Proceedings of the 2003 Winter Simulation Conference, pp. 1039–1045 (2003)

  63. Sourceforge: Usarsim. (2012). URL http://sourceforge.net/apps/mediawiki/usarsim/

  64. Tsalatsanis, A., Yalcin, A., Valavanis, K.: Dynamic task allocation in cooperative robot teams. Robotica 30(5), 721–730 (2012)

    Article  Google Scholar 

  65. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. J. Field Robot. 25(4), 912–926 (2009)

    Google Scholar 

  66. Di Paola, D., Naso, D., Turchiano, B.: Consensus-based robust decentralized task assignment for heterogeneous robot networks. In: Proceedings of American Control Conference, pp. 4711–4716 (2011)

  67. Zhang, K., Collins Jr. E. G. , Shi, D.: Centralized and distributed task allocation in multi-robot teams via a stochastic clustering auction. ACM Trans. Auton. Adap. 7(2), Article 21 (2012)

  68. Khamis, A., Elmogy, A., Karray, F.: Complex task allocation in mobile surveillance systems. J. Intell. Robot. Syst. 64, 33–55 (2011)

    Article  Google Scholar 

  69. Iwano, Y., Osuka, K., Amano, H.: Posture manipulation for rescue activity via small traction robots. In: Proceedings of 2005 IEEE International Workshop on Safety, Security and Rescue Robots, pp. 87–92 (2005)

  70. Yim, M., Laucharoen, J.: Towards small robot aided victim manipulation. J. Intell. Robot. Syst. 64(1), 119–139 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Nejat, G. Robotic Urban Search and Rescue: A Survey from the Control Perspective. J Intell Robot Syst 72, 147–165 (2013). https://doi.org/10.1007/s10846-013-9822-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-9822-x

Keywords