Abstract
Given a polygonal domain, we devise a fully dynamic algorithm for maintaining the visibility polygon of any query point, i.e., as the polygonal domain is modified with vertex insertions and deletions to its obstacles, we update the visibility polygon of any query point. After preprocessing the initial input polygonal domain to build a few data structures, our dynamic algorithm takes \(O(k(\lg {|VP_\mathcal{P'}(q)|})+(\lg {n'})^{2}+h)\) (resp. \(O(k(\lg n')^2+(\lg |VP_\mathcal{P'}(q)|)+h)\)) worst-case time to update the visibility polygon \(VP_\mathcal{P'}(q)\) of a query point q when any vertex v is inserted to (resp. deleted from) any obstacle of the current polygonal domain \(\mathcal P'\). Here, \(n'\) is the number of vertices in \(\mathcal P'\), h is the number of obstacles in \(\mathcal P'\), \(VP_\mathcal{P'}(q)\) is the visibility polygon of q in \(\mathcal P'\) (\(|VP_\mathcal{P'}(q)|\) is the number of vertices of \(VP_\mathcal{P'}(q)\)), and k is the number of combinatorial changes in \(VP_\mathcal{P'}(q)\) due to the insertion (resp. deletion) of v.
R. Inkulu’s research is supported in part by SERB MATRICS grant MTR/2017/000474.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akbari, K., Ghodsi, M.: Visibility maintenance of a moving segment observer inside polygons with holes. In: Proceedings of Canadian Conference on Computational Geometry, pp. 117–120 (2010)
Aronov, B., Guibas, L.J., Teichmann, M., Zhang, L.: Visibility queries and maintenance in simple polygons. Discrete Comput. Geom. 27(4), 461–483 (2002). https://doi.org/10.1007/s00454-001-0089-9
Asano, T., Asano, T., Guibas, L.J., Hershberger, J., Imai, H.: Visibility of disjoint polygons. Algorithmica 1(1), 49–63 (1986). https://doi.org/10.1007/BF01840436
Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994)
Baygi, M.N., Ghodsi, M.: Space/query-time tradeoff for computing the visibility polygon. Comput. Geom. 46, 371–381 (2013)
Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Comput. Geom. 23(3), 313–335 (2002)
Chen, D.Z., Daescu, O.: Maintaining visibility of a polygon with a moving point of view. Inf. Process. Lett. 65(5), 269–275 (1998)
Chen, D.Z., Wang, H.: Visibility and ray shooting queries in polygonal domains. Comput. Geom. 48(2), 31–41 (2015)
Choudhury, T., Inkulu, R.: Maintaining the visibility graph of a dynamic simple polygon. In: Pal, S.P., Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 42–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11509-8_4
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2009)
Davis, L.S., Benedikt, M.L.: Computational models of space: isovists and isovist fields. Comput. Graph. Image Process. 11(1), 49–72 (1979)
ElGindy, H.A., Avis, D.: A linear algorithm for computing the visibility polygon from a point. J. Algorithms 2(2), 186–197 (1981)
Ghosh, S.K.: Computing the visibility polygon from a convex set and related problems. J. Algorithms 12(1), 75–95 (1991)
Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, New York (2007)
Ghosh, S.K., Mount, D.M.: An output-sensitive algorithm for computing visibility graphs. SIAM J. Comput. 20(5), 888–910 (1991)
Goodrich, M.T., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivisions via balanced geodesic triangulations. J. Algorithms 23(1), 51–73 (1997)
Heffernan, P.J., Mitchell, J.S.B.: An optimal algorithm for computing visibility in the plane. SIAM J. Comput. 24(1), 184–201 (1995)
Inkulu, R., Kapoor, S.: Visibility queries in a polygonal region. Comput. Geom. 42(9), 852–864 (2009)
Inkulu, R., Thakur, N.P.: Incremental algorithms to update visibility polygons. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 205–218. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_19
Inkulu, R., Sowmya, K., Thakur, N.P.: Dynamic algorithms for visibility polygons in simple polygons (CoRR 1704.08219) (2020). Accepted to Int. J. Comput. Geom. Appl
Joe, B., Simpson, R.: Corrections to Lee’s visibility polygon algorithm. BIT Numer. Math. 27(4), 458–473 (1987). https://doi.org/10.1007/BF01937271
Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proceedings of Symposium on Theory of Computing, pp. 770–779 (1999)
Kapoor, S., Maheshwari, S.N.: Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles. In: Proceedings of Symposium on Computational Geometry, pp. 172–182 (1988)
Kapoor, S., Maheshwari, S.N.: Efficiently constructing the visibility graph of a simple polygon with obstacles. SIAM J. Comput. 30(3), 847–871 (2000)
Kapoor, S., Maheshwari, S.N., Mitchell, J.S.B.: An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom. 18(4), 377–383 (1997). https://doi.org/10.1007/PL00009323
Lee, D.T.: Visibility of a simple polygon. Comput. Vis. Graph. Image Process. 22(2), 207–221 (1983)
Lu, L., Yang, C., Wang, J.: Point visibility computing in polygons with holes. J. Inf. Comput. Sci. 16(7), 4165–4173 (2011)
Overmars, M.H., van Leewen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)
Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudotriangulations. Discrete Comput. Geom. 16(4), 419–453 (1996). https://doi.org/10.1007/BF02712876
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6
Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility polygons with holes. In: Proceedings of the Symposium on Computational Geometry, pp. 14–23 (1986)
Zarei, A., Ghodsi, M.: Efficient computation of query point visibility in polygons with holes. In: Proceedings of the Symposium on Computational Geometry, pp. 314–320 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Agrawal, S., Inkulu, R. (2020). Visibility Polygon Queries Among Dynamic Polygonal Obstacles in Plane. In: Kim, D., Uma, R., Cai, Z., Lee, D. (eds) Computing and Combinatorics. COCOON 2020. Lecture Notes in Computer Science(), vol 12273. Springer, Cham. https://doi.org/10.1007/978-3-030-58150-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-58150-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58149-7
Online ISBN: 978-3-030-58150-3
eBook Packages: Computer ScienceComputer Science (R0)