Abstract
Multi-Layer Networks (MLN) generalise the traditional, single layered networks, by allowing to simultaneously express multiple aspects of relationships in collective systems, while keeping the description intuitive and compact. As such, they are increasingly gaining popularity for modelling Collective Adaptive Systems (CAS), e.g. engineered cyber-physical systems or animal collectives. One of the most important notions in network analysis are centrality measures, which inform us about the relative importance of nodes. Computing centrality measures is often challenging for large and dense single-layer networks. This challenge is even more prominent in the multi-layer setup, and thus motivates the design of efficient, centrality-preserving MLN reduction techniques. Network centrality does not naturally translate to its multi-layer counterpart, since the interpretation of the relative importance of nodes and layers may differ across application domains. In this paper, we take a notion of eigenvector-based centrality for a special type of MLNs (multiplex MLNs), with undirected, weighted edges, which was recently proposed in the literature. Then, we define and implement a framework for exact reductions for this class of MLNs and accompanying eigenvector centrality. Our method is inspired by the existing bisimulation-based exact model reductions for single-layered networks: the idea behind the reduction is to identify and aggregate nodes (resp. layers) with the same centrality score. We do so via efficient, static, syntactic transformations. We empirically demonstrate the speed up in the computation over a range of real-world MLNs from different domains including biology and social science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We refer the interested reader to the original reference, for a discussion on the error and rate of convergence.
- 2.
In case of symmetric graphs, ingoing and outgoing edges will be indistinguishable and overall neighbours are accounted for.
References
Banerjee, A., Chandrasekhar, A., Duflo, E., Jackson, M.: The diffusion of microfinance. Science 341, 1236498 (2013)
Barrett, L., Henzi, P., Lusseau, D.: Taking sociality seriously: the structure of multi-dimensional social networks as a source of information for individuals. Phil. Trans. Roy. Soc. Lond. Ser. B Biol. Sci. 367, 2108–2118 (2012)
Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 89, 032804 (2014)
Bloch, F., Jackson, M., Tebaldi, P.: Centrality measures in networks. SSRN Electron. J. (2016)
Bonacich, P.: Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2(1), 113–120 (1972)
Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)
Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008)
Brandes, U., Lerner, J.: Structural similarity: spectral methods for relaxed blockmodeling. J. Classif. 27(3), 279–306 (2010)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_6
Cardelli, L., Tribastone, M.,Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: 43st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) (2016)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_19
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)
Cardillo, A., et al.: Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)
Christakis, N., Fowler, J.: Social network sensors for early detection of contagious outbreaks. PloS One 5, e12948 (2010)
De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015)
De Domenico, M., Solé-Ribalta, A., Gómez, S., Arenas, A.: Navigability of interconnected networks under random failures. Proc. Natl. Acad. Sci. 111, 8351–8356 (2014)
De Domenico, M., et al.: Mathematical formulation of multi-layer networks. Phys. Rev. X 3, 07 (2013)
De Domenico, M., Solé-Ribalta, A., Omodei, E., Gomez, S., Arenas, A.: Centrality in interconnected multilayer networks. Phys. D Nonlinear Phenom. 323, 11 (2013)
De Domenico, M., Solé-Ribalta, A., Omodei, E., Gomez, S., Arenas, A.: Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015)
De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems. ArXiv, abs/1408.2925 (2015)
Farine, D., Aplin, L., Sheldon, B., Hoppitt, W.: Interspecific social networks promote information transmission in wild songbirds. Proc. Biol. Sci. Roy. Soc. 282, 20142804 (2015)
Feret, J., Henzinger, T., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-based systems. Theor. Comput. Sci. 431, 137–164 (2012)
Franz, M., Altmann, J., Alberts, S.: Knockouts of high-ranking males have limited impact on baboon social networks. Curr. Zool. 61, 107–113 (2015)
Ganguly, A., Petrov, T., Koeppl, H.: Markov chain aggregation and its applications to combinatorial reaction networks. J. Math. Biol. 69(3), 767–797 (2014)
Gazda, S., Iyer, S., Killingback, T., Connor, R., Brault, S.: The importance of delineating networks by activity type in bottlenose dolphins (Tursiops truncatus) in cedar key, Florida. Roy. Soc. Open Sci. 2, 140263 (2015)
Granell, C., Gomez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)
Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a markovian process algebra. In: MFCS, pp. 293–306 (2015)
Jackson, M.: Social and Economic Networks (2008)
Johnson, J., Borgatti, S., Everett, M.: Analyzing Social Networks (2013)
Kapferer, B.: Strategy and transaction in an African factory: African workers and Indian management in a Zambian town. Manchester Univ. Press 43(4), 362–363 (1972)
Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)
KhudaBukhsh, W.R., Auddy, A., Disser, Y., Koeppl, H.: Approximate lumpability for markovian agent-based models using local symmetries. J. Appl. Probab. 56, 04 (2018)
Krackhardt, D.: Cognitive social structures. Social Netw. 9(2), 109–134 (1987)
Lazega, E.: The Collegial Phenomenon: The Social Mechanisms of Cooperation among Peers in a Corporate Law Partnership. Oxford University Press, Oxford (2001)
Lerner, J.: Role assignments. In: Network Analysis: Methodological Foundations [Outcome of a Dagstuhl Seminar, 13–16 April 2004], pp. 216–252 (2004)
Magnani, M., Micenková, B., Rossi, L.: Combinatorial analysis of multiple networks. CoRR, abs/1303.4986 (2013)
McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)
McKay, B., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 6009, 94–112 (2013)
Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)
Omodei, E., De Domenico, M., Arenas, A.: Characterizing interactions in online social networks during exceptional events. Front. Phys. 3, 06 (2015)
Padgett, J.F., Ansell, C.K.: Robust action and the rise of the medici, 1400–1434. Am. J. Sociol. 98(6), 1259–1319 (1993)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. In: WWW 1999 (1999)
Robert Paige and Robert Endre Tarjan: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
Snijders, T.A.B., Pattison, P.E., Robins, G.L., Handcock, M.S.: New specifications for exponential random graph models. Sociol. Methodol. 36(1), 99–153 (2006)
Conde, L.S., Romance, M., Herrero, R., Flores, J., del Amo, A.G., Boccaletti, S.: Eigenvector centrality of nodes in multiplex networks. Chaos (Woodbury, N.Y.) 23, 033131 (2013)
Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: Biogrid: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)
Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A.: Differential equivalence yields network centrality. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018, Part III. LNCS, vol. 11246, pp. 186–201. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_13
Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process algebra. In: CONCUR, pp. 380–394 (2012)
Tudisco, F., Arrigo, F., Gautier, A.: Node and layer eigenvector centralities for multiplex networks. SIAM J. Appl. Math. 78(2), 853–876 (2018)
van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE Trans. Autom. Control 49, 2160–2172 (2004)
Vickers, M., Chan, M.: Representing classroom social structure. Victoria Institute of Secondary Education, Melbourne (1981)
Stanley, W., Katherine, F.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)
Wei, X., Valler, N.B., Prakash, A., Neamtiu, I., Faloutsos, M., Faloutsos, C.: Competing memes propagation on networks: a case study of composite networks. ACM SIGCOMM Comput. Commun. Rev. 42, 5–11 (2012)
Acknowledgements
The authors’ research is supported by the Ministry of Science, Research and the Arts of the state of Baden-Württemberg, and the DFG Centre of Excellence 2117 ‘Centre for the Advanced Study of Collective Behaviour’ (ID: 422037984). The authors would like to thank Ulrik Brandes and Giacomo Rapisardi for the inspiring discussions on the topic, Andrea Vandin for the support and the insights on the use of the tool ERODE and the anonymous reviewers for their suggestions and comments.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Petrov, T., Tognazzi, S. (2020). Centrality-Preserving Exact Reductions of Multi-Layer Networks. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles. ISoLA 2020. Lecture Notes in Computer Science(), vol 12477. Springer, Cham. https://doi.org/10.1007/978-3-030-61470-6_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-61470-6_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61469-0
Online ISBN: 978-3-030-61470-6
eBook Packages: Computer ScienceComputer Science (R0)