Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case

  • Conference paper
  • First Online:
Information Systems (EMCIS 2020)

Abstract

Data Warehousing applied in Big Data contexts has been an emergent topic of research, as traditional Data Warehousing technologies are unable to deal with Big Data characteristics and challenges. The methods used in this field are already well systematized and adopted by practitioners, while research in Big Data Warehousing is only starting to provide some guidance on how to model such complex systems. This work contributes to the process of designing conceptual data models for Big Data Warehouses proposing a method based on rules and design patterns, which aims to gather the information of a certain application domain mapped in a relational conceptual model. A complex domain that can benefit from this work is Genomics, characterized by an increasing heterogeneity, both in terms of content and data structure. Moreover, the challenges for collecting and analyzing genome data under a unified perspective have become a bottleneck for the scientific community, reason why standardized analytical repositories such as a Big Genome Warehouse can be of high value to the community. In the demonstration case presented here, a genomics relational model is merged with the proposed Big Data Warehouse Conceptual Metamodel to obtain the Big Genome Warehouse Conceptual Model, showing that the design rules and patterns can be applied having a relational conceptual model as starting point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krishnan, K.: Data Warehousing in the Age of Big Data. Morgan Kaufmann is an imprint of Elsevier, Amsterdam (2013)

    Google Scholar 

  2. Santos, M.Y., Costa, C.: Big Data: Concepts, Warehousing and Analytics. River Publishers, Aalborg (2020)

    Google Scholar 

  3. Cuzzocrea, A., Moussa, R.: Multidimensional database modeling: literature survey and research agenda in the big data era. In: 2017 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6 (2017)

    Google Scholar 

  4. Di Tria, F., Lefons, E., Tangorra, F.: Design process for big data warehouses. In: 2014 International Conference on Data Science and Advanced Analytics (DSAA), pp. 512–518. IEEE (2014)

    Google Scholar 

  5. Dehdouh, K., Bentayeb, F., Boussaid, O., Kabachi, N.: Using the column oriented NoSQL model for implementing big data warehouses. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) (2015)

    Google Scholar 

  6. Bézivin, J.: On the unification power of models. Softw. Syst. Model. 4(2), 171–188 (2005). https://doi.org/10.1007/s10270-005-0079-0

    Article  Google Scholar 

  7. Reyes Román, J.F., Pastor, Ó., Casamayor, J.C., Valverde, F.: Applying conceptual modeling to better understand the human genome. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 404–412. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1_31

    Chapter  Google Scholar 

  8. Embley, D.W., Liddle, S.W.: Big data—conceptual modeling to the rescue. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 1–8. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_1

    Chapter  Google Scholar 

  9. Giebler, C., Gröger, C., Hoos, E., Schwarz, H., Mitschang, B.: Modeling data lakes with data vault: practical experiences, assessment, and lessons learned. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 63–77. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_7

    Chapter  Google Scholar 

  10. Gil, D., Song, I.-Y.: Modeling and management of big data: challenges and opportunities. Future Gener. Comput. Syst. 63, 96–99 (2016)

    Article  Google Scholar 

  11. Di Tria, F., Lefons, E., Tangorra, F.: GrHyMM: a graph-oriented hybrid multidimensional model. In: De Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H. (eds.) ER 2011. LNCS, vol. 6999, pp. 86–97. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24574-9_12

    Chapter  Google Scholar 

  12. Santos, M.Y., Costa, C.: Data warehousing in big data: from multidimensional to tabular data models. In: Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering, pp. 51–60. ACM, New York (2016)

    Google Scholar 

  13. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley, Hoboken (2013)

    Google Scholar 

  14. Costa, C., Santos, M.Y.: Evaluating several design patterns and trends in big data warehousing systems. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 459–473. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_28

    Chapter  Google Scholar 

  15. Santos, M.Y., Costa, C., Galvão, J., Andrade, C., Pastor, O., Marcén, A.C.: Big data warehousing for efficient, integrated and advanced analytics - visionary paper. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 215–226. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_19

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been supported by FCT – Fundação para a Ciên-cia e Tecnologia within the Project Scope: UID/CEC/00319/2019, the Doctoral scholarship PD/BDE/135100/2017 and European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039479; Funding Reference: POCI-01-0247-FEDER-039479]. We also thank both the Spanish State Research Agency and the Generalitat Valenciana under the projects DataME TIN2016-80811-P, ACIF/2018/171, and PROMETEO/2018/176. Icons made by Freepik, from www.flaticon.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Galvão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galvão, J., Leon, A., Costa, C., Santos, M.Y., López, Ó.P. (2020). Towards Designing Conceptual Data Models for Big Data Warehouses: The Genomics Case. In: Themistocleous, M., Papadaki, M., Kamal, M.M. (eds) Information Systems. EMCIS 2020. Lecture Notes in Business Information Processing, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-030-63396-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63396-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63395-0

  • Online ISBN: 978-3-030-63396-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics