Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cranial Implant Design via Virtual Craniectomy with Shape Priors

  • Conference paper
  • First Online:
Towards the Automatization of Cranial Implant Design in Cranioplasty (AutoImplant 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12439))

Included in the following conference series:

Abstract

Cranial implant design is a challenging task, whose accuracy is crucial in the context of cranioplasty procedures. This task is usually performed manually by experts using computer-assisted design software. In this work, we propose and evaluate alternative automatic deep learning models for cranial implant reconstruction from CT images. The models are trained and evaluated using the database released by the AutoImplant challenge, and compared to a baseline implemented by the organizers. We employ a simulated virtual craniectomy to train our models using complete skulls, and compare two different approaches trained with this procedure. The first one is a direct estimation method based on the UNet architecture. The second method incorporates shape priors to increase the robustness when dealing with out-of-distribution implant shapes. Our direct estimation method outperforms the baselines provided by the organizers, while the model with shape priors shows superior performance when dealing with out-of-distribution cases. Overall, our methods show promising results in the difficult task of cranial implant design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The database can be accessed at: http://headctstudy.qure.ai/dataset.

References

  1. Andrabi, S.M., Sarmast, A.H., Kirmani, A.R., Bhat, A.R.: Cranioplasty: indications, procedures, and outcome-an institutional experience. Surg. Neurol. Int. 8, 91 (2017)

    Article  Google Scholar 

  2. Chen, X., Xu, L., Li, X., Egger, J.: Computer-aided implant design for the restoration of cranial defects. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  3. Chilamkurthy, S., et al.: Development and validation of deep learning algorithms for detection of critical findings in head CT scans. arXiv preprint arXiv:1803.05854 (2018)

  4. Hieu, L., et al.: Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyp. J. 9(3), 175–186 (2003). https://doi.org/10.1108/13552540310477481

    Article  Google Scholar 

  5. Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)

    Article  Google Scholar 

  6. Larrazabal, A.J., Martínez, C., Glocker, B., Ferrante, E.: Post-DAE: anatomically plausible segmentation via post-processing with denoising autoencoders. IEEE Trans. Medi. Imaging (2020). https://doi.org/10.1109/TMI.2020.3005297

  7. Larrazabal, A.J., Martinez, C., Ferrante, E.: Anatomical priors for image segmentation via post-processing with denoising autoencoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 585–593. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_65

    Chapter  Google Scholar 

  8. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: Tetris: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  9. Li, J., Pepe, A., Gsaxner, C., von Campe, G., Egger, J.: A baseline approach for autoimplant: the miccai 2020 cranial implant design challenge. arXiv preprint arXiv:2006.12449 (2020)

  10. Mansilla, L., Milone, D.H., Ferrante, E.: Learning deformable registration of medical images with anatomical constraints. Neural Netw. 124, 269–279 (2020)

    Article  Google Scholar 

  11. Matzkin, F., et al.: Self-supervised skull reconstruction in brain CT images with decompressive craniectomy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 390–399. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_38

    Chapter  Google Scholar 

  12. Monteiro, M., et al.: Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit. Health 2(6), e314–e322 (2020). https://doi.org/10.1016/s2589-7500(20)30085-6

    Article  Google Scholar 

  13. Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15

    Chapter  Google Scholar 

  14. Patravali, J., Jain, S., Chilamkurthy, S.: 2D-3D fully convolutional neural networks for cardiac MR segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 130–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_14

    Chapter  Google Scholar 

  15. Shakeri, M., et al.: Prior-based coregistration and cosegmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 529–537. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_61

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge NVIDIA Corporation with the donation of the Titan Xp GPU used for this research, and the support of UNL (CAID-PIC-50220140100084LI) and ANPCyT (PICT 2018-03907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Matzkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matzkin, F., Newcombe, V., Glocker, B., Ferrante, E. (2020). Cranial Implant Design via Virtual Craniectomy with Shape Priors. In: Li, J., Egger, J. (eds) Towards the Automatization of Cranial Implant Design in Cranioplasty. AutoImplant 2020. Lecture Notes in Computer Science(), vol 12439. Springer, Cham. https://doi.org/10.1007/978-3-030-64327-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64327-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64326-3

  • Online ISBN: 978-3-030-64327-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics