Abstract
Cranial implant design is a challenging task, whose accuracy is crucial in the context of cranioplasty procedures. This task is usually performed manually by experts using computer-assisted design software. In this work, we propose and evaluate alternative automatic deep learning models for cranial implant reconstruction from CT images. The models are trained and evaluated using the database released by the AutoImplant challenge, and compared to a baseline implemented by the organizers. We employ a simulated virtual craniectomy to train our models using complete skulls, and compare two different approaches trained with this procedure. The first one is a direct estimation method based on the UNet architecture. The second method incorporates shape priors to increase the robustness when dealing with out-of-distribution implant shapes. Our direct estimation method outperforms the baselines provided by the organizers, while the model with shape priors shows superior performance when dealing with out-of-distribution cases. Overall, our methods show promising results in the difficult task of cranial implant design.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The database can be accessed at: http://headctstudy.qure.ai/dataset.
References
Andrabi, S.M., Sarmast, A.H., Kirmani, A.R., Bhat, A.R.: Cranioplasty: indications, procedures, and outcome-an institutional experience. Surg. Neurol. Int. 8, 91 (2017)
Chen, X., Xu, L., Li, X., Egger, J.: Computer-aided implant design for the restoration of cranial defects. Sci. Rep. 7(1), 1–10 (2017)
Chilamkurthy, S., et al.: Development and validation of deep learning algorithms for detection of critical findings in head CT scans. arXiv preprint arXiv:1803.05854 (2018)
Hieu, L., et al.: Design for medical rapid prototyping of cranioplasty implants. Rapid Prototyp. J. 9(3), 175–186 (2003). https://doi.org/10.1108/13552540310477481
Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)
Larrazabal, A.J., Martínez, C., Glocker, B., Ferrante, E.: Post-DAE: anatomically plausible segmentation via post-processing with denoising autoencoders. IEEE Trans. Medi. Imaging (2020). https://doi.org/10.1109/TMI.2020.3005297
Larrazabal, A.J., Martinez, C., Ferrante, E.: Anatomical priors for image segmentation via post-processing with denoising autoencoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 585–593. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_65
Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: Tetris: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)
Li, J., Pepe, A., Gsaxner, C., von Campe, G., Egger, J.: A baseline approach for autoimplant: the miccai 2020 cranial implant design challenge. arXiv preprint arXiv:2006.12449 (2020)
Mansilla, L., Milone, D.H., Ferrante, E.: Learning deformable registration of medical images with anatomical constraints. Neural Netw. 124, 269–279 (2020)
Matzkin, F., et al.: Self-supervised skull reconstruction in brain CT images with decompressive craniectomy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 390–399. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_38
Monteiro, M., et al.: Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digit. Health 2(6), e314–e322 (2020). https://doi.org/10.1016/s2589-7500(20)30085-6
Morais, A., Egger, J., Alves, V.: Automated computer-aided design of cranial implants using a deep volumetric convolutional denoising autoencoder. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’19 2019. AISC, vol. 932, pp. 151–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16187-3_15
Patravali, J., Jain, S., Chilamkurthy, S.: 2D-3D fully convolutional neural networks for cardiac MR segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 130–139. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_14
Shakeri, M., et al.: Prior-based coregistration and cosegmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 529–537. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_61
Acknowledgments
The authors gratefully acknowledge NVIDIA Corporation with the donation of the Titan Xp GPU used for this research, and the support of UNL (CAID-PIC-50220140100084LI) and ANPCyT (PICT 2018-03907).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Matzkin, F., Newcombe, V., Glocker, B., Ferrante, E. (2020). Cranial Implant Design via Virtual Craniectomy with Shape Priors. In: Li, J., Egger, J. (eds) Towards the Automatization of Cranial Implant Design in Cranioplasty. AutoImplant 2020. Lecture Notes in Computer Science(), vol 12439. Springer, Cham. https://doi.org/10.1007/978-3-030-64327-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-64327-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64326-3
Online ISBN: 978-3-030-64327-0
eBook Packages: Computer ScienceComputer Science (R0)