Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparative Study on Visualization Technique for Home Network

  • Conference paper
  • First Online:
Progress in Intelligent Decision Science (IDS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1301))

Included in the following conference series:

  • 639 Accesses

Abstract

There has been a number of researches carried out on Visualization Technique that applied into Computer Networking including Enterprise Network and Home Network. Many researchers have stated that the way data being displayed in Home Network application is the most important aspects in understanding network data issues concerning Home Network. This paper reviewed the existing research related to Visualization, Home Network and Network Management; intended to (1) identify the visualization techniques that being used in existing Network Management Tools and (2) recommend potential future work that could be conducted in order to archive desirable goals of Home Networking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Poole, E.S., Chetty, M.: More than meets the eye: transforming the user experience of home network management. In: Proceedings of the 7th ACM Conference on Designing Interactive Systems. ACM, pp. 455–464 (2008)

    Google Scholar 

  2. Crabtree, A., Mortier, R., Rodden, T., Tolmie, P.: Unremarkable networking: the home network as a part of everyday life. In: Proceedings of the Designing Interactive Systems Conference. ACM, pp. 554–563 (2012)

    Google Scholar 

  3. Yang, J., Edwards, W.K., Haslem, D.: Eden: supporting home network management through interactive visual tools. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology. ACM, pp. 109–118 (2010)

    Google Scholar 

  4. Comer, D., Ralph, D.: Computer Networks and Internets. Lecture Notes (1997)

    Google Scholar 

  5. Grinter, R.E., Edwards, W.K., Newman, M.W., Ducheneaut, N.: the work to make a home network work. In: Ecscw 2005, vol. 200, pp. 469–488 (2005). https://doi.org/10.1007/1-4020-4023-7_24

  6. Bly, S., Schilit, B., McDonald, D.W.: Broken expectations in the digital home. In: CHI’2006 Extended Abstracts on Human Factors in Computing Systems. ACM, pp. 568–573 (2006)

    Google Scholar 

  7. Grinter, R.E., Greenhalgh, C., Steve Benford, W., Edwards, K., Chetty, M., Poole, E.S., Sung, J.Y., et al.: The ins and outs of home networking. ACM Trans. Comput.-Hum. Inter. 16, 1–28 (2009). https://doi.org/10.1145/1534903.1534905

    Article  Google Scholar 

  8. Poole, E.S., Chetty, M., Morgan, T.: Computer help at home: methods and motivations for informal technical support. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, pp. 739–748 (2009)

    Google Scholar 

  9. Elmore, B., Hamilton, S., Ivaturi, S.: Designing software for consumers to easily set up a secure home network. In: CHI’2007 Extended Abstracts on Human Factors in Computing Systems. ACM, pp. 1735–1740 (2007)

    Google Scholar 

  10. Liao, Q., Striegel, A., Chawla, N.: Visualizing graph dynamics and similarity for enterprise network security and management. In: Proceedings of the Seventh International Symposium on Visualization for Cyber Security, pp. 34–45 (2010)

    Google Scholar 

  11. Shannon, R., Quigley, A., Nixon, P.: Graphemes: self-organizing shape-based clustered structures for network visualisations. In: CHI’2010 Extended Abstracts on Human Factors in Computing Systems. ACM, pp. 4195–4200 (2010)

    Google Scholar 

  12. Erman, H., Azizah, J., Mei Choo, A.: A comparative study on human-computer interactiob’s influence to home network management. In: 2nd International Conference on Interactive Digital Media (ICIDM 2013), pp. 218–225 (2013)

    Google Scholar 

  13. Shehan, E., Edwards, W.K.: Home networking and HCI: what hath god wrought? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2007)

    Google Scholar 

  14. Le Grand, B., Soto, M.: Information management–topic maps visualization. XML Europe, pp. 1–11 (2000)

    Google Scholar 

  15. van Wijk, J.J.: Views on visualization. IEEE Trans. Vis. Comput. Graph. 12, 421–432 (2006). https://doi.org/10.1109/TVCG.2006.80

    Article  Google Scholar 

  16. Löwgren, J.: Visualization and HCI: a brief survey (1996)

    Google Scholar 

  17. Ten, D.W.H., Manickam, S., Ramadass, S., Al Bazar, H.A.: Study on advanced visualization tools in network monitoring platform. In: 2009 Third UK Sim European Symposium on Computer Modeling and Simulation. IEEE, pp. 445–449 (2009). https://doi.org/10.1109/EMS.2009.24

  18. Herman, I.: Graph visualization and navigation in information visualization: a survey. IEEE Trans. Vis. Comput. Graph. 6, 24–43 (2000)

    Article  Google Scholar 

  19. Ball, R., Fink, G.A., North, C.: Home-centric visualization of network traffic for security administration. In: Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security. ACM, pp. 55–64 (2004)

    Google Scholar 

  20. Berger, A.A.: Media Research Technique (1998)

    Google Scholar 

  21. Neuendorf, K.A.: A flowchart for the typical process of content analysis research. In: The Content Analysis Guidebook, p. 320 (2002)

    Google Scholar 

  22. Neuman, W.L.: Social Research Methods: Qualitative and Quantitative Approaches. Relevance of social research, vol. 8 (2003)

    Google Scholar 

  23. Ahmad, F., Sumner, T.: Improving conceptual learning through customized knowledge visualization. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, pp. 407–410. IEEE (2010). https://doi.org/10.1109/WKDD.2010.68

  24. Nuutinen, J.A., Sutinen, E.: Visualization of the learning process using concept mapping. In: Proceedings of the 3rd IEEE International Conference on Advanced Learning Technologies, 2003, pp. 348–349. IEEE (2003)

    Google Scholar 

  25. Fulcher, J.A.: Visualization as a key element in learning. In: Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, pp. 462–472. IEEE (2001)

    Google Scholar 

  26. Yang, J., Edwards, W.K.: A study on network management tools of householders. In: Poceedings of the 2010 ACM SIGCOMM workshop on Home networks, vol. 82, pp. 1–5. ACM (2010)

    Google Scholar 

  27. Castelli, N., Ogonowski, C., Jakobi, T., Stein, M., Stevens, G., Wulf, V.: What happened in my home ?: an end-user development approach for smart home data visualization. In: 2017 CHI Conference on Human Factors in Computing Systems, pp. 853–866 (2017)

    Google Scholar 

  28. Moallem, A.: Why should home networking be complicated? In: Advances in Usability Evaluation: Part II. CRC Press, pp. 4169–4178 (2013)

    Google Scholar 

  29. Edwards, W.K., Grinter, R.E., Mahajan, R., Wetherall, D.: Advancing the state of home networking. Commun. ACM 54, 62 (2011). https://doi.org/10.1145/1953122.1953143

    Article  Google Scholar 

  30. Edwards, W.K., Newman, M.W., Shehan Poole, E., Arbor, A.: The infrastructure problem in HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 423–432 (2010)

    Google Scholar 

  31. Rana, A.I., Jennings, B.: Semantic aware processing of user defined inference rules to manage home networks. J. Netw. Comput. Appl. 79, 68–87 (2017). https://doi.org/10.1016/j.jnca.2016.11.020

    Article  Google Scholar 

  32. Xu, K., Wang, X., Wei, W., Song, H., Mao, B.: Toward software defined smart home. IEEE Commun. Mag. 54, 116–122 (2016). https://doi.org/10.1109/MCOM.2016.7470945

    Article  Google Scholar 

  33. Chetty, M., Feamster, N.: Refactoring network infrastructure to improve manageability: a case study of home networking. ACM SIGCOMM Comput. Commun. Rev. 42, 54–61 (2012)

    Article  Google Scholar 

  34. Mortier, R., Rodden, T., Lodge, T., McAuley, D., Rotsos, C., Moore, A.W., Koliousis, A., Sventek, J.: Control and understanding: owning your home network. In: 2012 Fourth International Conference on Communication Systems and Networks (COMSNETS 2012), pp. 1–10. IEEE (2012). https://doi.org/10.1109/COMSNETS.2012.6151322

  35. Xydas, I., Miaoulis, G., Bonnefoi, P.-F., Plemenos, D., Ghazanfarpour, D.: 3D graph visualisation of web normal and malicious traffic. In: Tenth International Conference on Information Visualisation (IV’2006), pp. 621–629. IEEE (2006). https://doi.org/10.1109/IV.2006.2

  36. Shannon, R., Quigley, A., Nixon, P.: Showtime: increasing viewer understanding of dynamic network visualisations. In: Proceedings of the International Conference on Advanced visual Interfaces, pp. 377–380 (2010)

    Google Scholar 

  37. Hong, S.H., Murtagh, T.: Visualisation of large and complex networks using polyplane. In: Graph Drawing, pp. 471–481 (2005)

    Google Scholar 

  38. Wilson, C., Hargreaves, T., Hauxwell-Baldwin, R.: Benefits and risks of smart home technologies. Energy Policy 103, 72–83 (2017). https://doi.org/10.1016/j.enpol.2016.12.047

    Article  Google Scholar 

  39. Samuel, S., Issac, S.: A review of connectivity challenges in IoT-smart home. In: 2016 3rd MEC International Conference on Big Data and Smart City, ICBDSC 2016, pp. 364–367 (2016). https://doi.org/10.1109/ICBDSC.2016.7460395

  40. Guimaraes, V.T., Dal Sasso Freitas, C.M., Ramin Sadre, L.M., Granville, L.Z.: A survey on information visualization for network and service management. IEEE Commun. Surv. Tutorials 18, 285–323 (2015). https://doi.org/10.1109/COMST.2015.2450538

    Article  Google Scholar 

  41. Dimara, E., Bezerianos, A.: The attraction effect in information visualization. IEEE Trans Vis. Comput. Graph. 23, 471–480 (2016). https://doi.org/10.1109/TVCG.2016.2598594

    Article  Google Scholar 

  42. Boy, J., Rensink, R.A., Bertini, E., Fekete, J.D.: A principled way of assessing visualization literacy. IEEE Trans. Vis. Comput. Graph. 20, 1963–1972 (2014). https://doi.org/10.1109/TVCG.2014.2346984

    Article  Google Scholar 

  43. Knowles, B., Blair, L., Coulton, P., Lochrie, M.: Rethinking plan A for sustainable HCI. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI’2014, pp. 3593–3596 (2014). https://doi.org/10.1145/2556288.2557311

  44. Knowles, B., Blair, L., Hazas, M., Walker, S.: Exploring sustainability research in computing: where we are and where we go next. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive And Ubiquitous Computing, pp. 305–314. ACM (2013)

    Google Scholar 

  45. Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Introduction, vol. 2 (2005). https://doi.org/10.1016/0166-3615(93)90066-A

  46. Dix, A.: Human-computer interaction, foundations and new paradigms. J. Vis. Lang. Comput. Elsevier, 1–13 (2016). https://doi.org/10.1016/j.jvlc.2016.04.001

  47. Obrenović, Ž.: Rethinking HCI education: teaching interactive computing concepts based on the experiential learning paradigm. Interactions 19, 66–70 (2012). https://doi.org/10.1145/2168931.2168945

    Article  Google Scholar 

  48. Posard, M.N., Rinderknecht, R.G.: Do people like working with computers more than human beings? Comput. Hum. Behav. 51, 232–238. Elsevier Ltd. (2015). https://doi.org/10.1016/j.chb.2015.04.057

  49. Håkansson, M., Sengers, P.: Beyond being green : simple living families and ICT. beyond being green: simple living families and ICT. In: Proceedings of the SIGCHI Conference on Human Factors in Computing, pp. 2725–2734. ACM (2013)

    Google Scholar 

  50. Viller, S., Worthy, P., Bodén, M., Weigel, J., Fitzpatrick, G., Rodden, T., Matthews, B.: IoT: designing for human values. In: Proceedings of the 2016 ACM Conference Companion Publication on Designing Interactive Systems, pp. 61–64 (2016). https://doi.org/10.1145/2908805.2913019

  51. Gonzalez, C.S., Ordonez, C.A.C.: Special section on human-computer interaction and education. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 11, 10–11 (2016). https://doi.org/10.1109/RITA.2016.2518439

    Article  Google Scholar 

  52. Harvey, J., Golightly, D., Smith, A.: HCI as a means to prosociality in the economy. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems-CHI’2014, pp. 2955–2964 (2014). https://doi.org/10.1145/2556288.2557367

  53. Hourcade, J.P., Bullock-Rest, N.E.: HCI for peace: a call for constructive action. In: Chi 2011, pp. 443–452 (2011). https://doi.org/10.1145/1978942.1979005

  54. Saizmaa, T., Kim, H.-C.: A holistic understanding of HCI perspectives on smart home. In: 2008 Fourth International Conference on Networked Computing and Advanced Information Management 2, pp. 59–65. IEEE (2008). https://doi.org/10.1109/NCM.2008.141

  55. Kotzé, P., Wong, W., Jorge, J., Dix, A., Silva, P.A. ed. Creativity and HCI: from experience to design in education. In: IFIP – The International Federation for Information Processing, vol. 289. Boston, MA. Springer US (2009). https://doi.org/10.1007/978-0-387-89022-7

  56. Karam, M.: A taxonomy of gestures in human computer interactions. Technical Report ECSTR-IAM05-009, Electronics and Computer Science, pp. 1–45 (2005)

    Google Scholar 

  57. Gillan, D.J., Cooke, N.J.: Methods of cognitive analysis for HCI. In: Conference companion on Human factors in computing systems-CHI’1995, pp. 349–350 (1995). https://doi.org/10.1145/223355.223716

  58. Luu, L.: Five Principles for Effective Data Visualizations, pp. 1–9 (2017)

    Google Scholar 

  59. Jeffery, C., Al-Gharaibeh, J.: Writing virtual environments for software visualization. Writing Virtual Environments for Software Visualization, pp. 1–155 (2015). https://doi.org/10.1007/978-1-4614-1755-2

  60. Thomas, J.J., Cook, K.A.: Visualization viewpoints: a visual analytics agenda. IEEE Comput. Graph. Appl. 26, 10–13 (2006). https://doi.org/10.1109/MCG.2006.5

    Article  Google Scholar 

  61. Shneiderman, B., Ben, S.: The Golden Rules Of User Interface Design. In: Designing the User Interface, pp. 1–28 (1997)

    Google Scholar 

  62. Myers, B., Hudson, S.E., Pausch, R.: Past, present, and future of user interface software tools. ACM Trans. Comput.-Hum. Inter. 7, 3–28 (2000). https://doi.org/10.1145/344949.344959

    Article  Google Scholar 

  63. Kwon, B.C., Javed, W., Elmqvist, N., Yi, J.S.: Direct manipulation through surrogate objects. In: Proceedings of the International Conference on Human Factors in Computing Systems (CHI’2011), pp. 627–636 (2011). https://doi.org/10.1145/1978942.1979033

  64. Allen, M., Mclachlan, P.: NAV - Network Analysis Visualization. University of British Columbia, Online, Columbia (2009)

    Google Scholar 

  65. Barksdale, J.T., McCrickard, D.S.: Concept mapping in agile usability. In: Proceedings of the 28th of the International Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA’2010, p. 4691 (2010). https://doi.org/10.1145/1753846.1754212

  66. Abduljalil, S., Kang, D.K.: Analysis of human factors in software application design for effective user experience. In: 2011 13th International Conference on Advanced Communication Technology (ICACT), pp. 1446–1451 IEEE (2011)

    Google Scholar 

  67. Smith, C.L., Kantor, P.B.: User Adaptation: Good Results from Poor Systems. Sigir, pp. 147–154 (2008). https://doi.org/10.1145/1390334.1390362

  68. Harrer, A., Göhnert, T.: Integrated representations and small data: towards contextualized and embedded analytics tools for learners. In: Proceedings of the 5th International Conference on Learning Analytics and Knowledge - LAK’2015, pp. 406–407 (2015). https://doi.org/10.1145/2723576.2723665

  69. Saito, K., Kouzou Ohara, M.K., Motoda, H.: Graph embedding on spheres and its application to visualization of information diffusion data. In: Proceedings of the 21st International Conference Companion on World Wide Web - WWW’2012 Companion, pp. 1137 (2012). https://doi.org/10.1145/2187980.2188253

  70. Rautek, Peter and Media Informatics. Augmented Visualization Gábor Sörös. Human-Computer Interaction (2010)

    Google Scholar 

  71. Mann, S.: Phenomenal augmented reality: advancing technology for the future of humanity. IEEE Consumer Electron. Mag. 4, 92–97 (2015). https://doi.org/10.1109/MCE.2015.2463312

    Article  Google Scholar 

  72. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Foundations and Trends® in Human–Computer Interaction. 8, 73–272 (2015). https://doi.org/10.1561/1100000049

  73. Hsiao, I-H., Guerra, J., Parra, D., Bakalov, F., König-ries, B., Brusilovsky, P.: Comparative social visualization for personalized e-learning. In: Proceedings of the International Working Conference on Advanced Visual Interfaces-AVI’2012, p. 303 (2012). https://doi.org/10.1145/2254556.2254614

  74. Karahalios, K.G., Viégas, F.B.: Social visualization. In: CHI’2006 Extended Abstracts on Human Factors in Computing Systems-CHI EA’06, 1667 (2006). https://doi.org/10.1145/1125451.1125758

  75. Kumar, C., Poppinga, B., Haeuser, D., Heuten, W., Boll, S.: Assessing end-user interaction for multi-criteria local search with heatmap and icon-based visualizations. In: Proceedings of the 1st ACM SIGSPATIAL International Workshop on MapInteraction, pp. 13–19 (2013). https://doi.org/10.1145/2534931.2534937

  76. Wattenberg, M.: A note on space-filling visualizations and space-filling curves. In: Proceedings - IEEE Symposium on Information Visualization, INFO VIS, pp. 181–186 (2005). https://doi.org/10.1109/INFVIS.2005.1532145

  77. Bruls, M., Huizing, K., van Wijk, J.J.: Squarified Treemaps, pp. 33–42 (2000). https://doi.org/10.1007/978-3-7091-6783-0_4

  78. Sathiyanarayanan, M., Burlutskiy, N.: Visualizing social networks using a treemap overlaid with a graph. Procedia Comput. Sci. 58, 113–120 (2015). https://doi.org/10.1016/j.procs.2015.08.037

    Article  Google Scholar 

  79. Li, N.: Hyperbolic Tree + Time Disc: visualizing hierarchical time-series data. In: VINCI’2014 Proceedings of the 7th International Symposium on Visual Information Communication and Interaction, p. 188 (2014). https://doi.org/10.1145/2636240.2636862

  80. Clough, D., Rivera, S., Kuttel, M.: Panopticon : A Scalable Monitoring System. In: Proceedings of the 2010 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 39–47. ACM (2010)

    Google Scholar 

  81. Villalon, J.J., Calvo, R.A.: Concept map mining: a definition and a framework for its evaluation. In: Proceedings-2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT Workshops 2008, pp. 357–360 (2008). https://doi.org/10.1109/WIIAT.2008.387

  82. Cao, N., Cui, W.: Introduction to Text Visualization (2016). https://doi.org/10.2991/978-94-6239-186-4

  83. Osburn, D.B.: Executive summary. In: National Visualization and Analytics Center-US Department of Homeland Security, pp. 1–4 (2010). https://doi.org/10.1053/j.ajkd.2006.03.010

  84. Taylor, T.: Principles of Data Visualization - What We See in a Visual. Fusion Charts (2014)

    Google Scholar 

  85. Shneiderman, B.: Designing for fun. Interactions 11, 48 (2004). https://doi.org/10.1145/1015530.1015552

    Article  Google Scholar 

  86. Kriglstein, S., Wallner, G., Pohl, M.: A user study of different gameplay visualizations. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI’2014, pp. 361–370 (2014). https://doi.org/10.1145/2556288.2557317

  87. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996). https://doi.org/10.1109/VL.1996.545307

  88. Bode, S., Riebisch, M.: Usability-focused architectural design for graphical user interface components. In: 2008 International Conference on Computational Intelligence for Modelling Control & Automation, pp. 1246–1251. IEEE (2008). https://doi.org/10.1109/CIMCA.2008.120

  89. Wurman, R.S.: Information Anxiety 2, vol. 2 (2000)

    Google Scholar 

Download references

Acknowledgement

Corresponding author (Erman Hamid) gratefully acknowledges concession and study leaves granted by the Universiti Teknikal Malaysia Melaka (UTeM) for his PhD. study. Acknowledgement to University Kebangsaan Malaysia (UKM) for the contribution of expertise and infrastructure, and to the Ministry of Higher Education (MOHE) Malaysia for the financial support of the programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erman Hamid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamid, E., Ang, M.C., Jaafar, A. (2021). A Comparative Study on Visualization Technique for Home Network. In: Allahviranloo, T., Salahshour, S., Arica, N. (eds) Progress in Intelligent Decision Science. IDS 2020. Advances in Intelligent Systems and Computing, vol 1301. Springer, Cham. https://doi.org/10.1007/978-3-030-66501-2_6

Download citation

Publish with us

Policies and ethics