Abstract
We study the planar orthogonal drawing style within the framework of partial representation extension. Let \((G,H,\varGamma _H)\) be a partial orthogonal drawing, i.e., G is a graph, \(H\subseteq G\) is a subgraph and \(\varGamma _H\) is a planar orthogonal drawing of H.
We show that the existence of an orthogonal drawing \(\varGamma _G\) of G that extends \(\varGamma _H\) can be tested in linear time. If such a drawing exists, then there also is one that uses O(|V(H)|) bends per edge. On the other hand, we show that it is NP-complete to find an extension that minimizes the number of bends or has a fixed number of bends per edge.
The full version of this article is available at ArXiv [3].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelini, P., et al.: Simultaneous orthogonal planarity. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 532–545. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_41
Angelini, P., et al.: Testing planarity of partially embedded graphs. ACM Trans. Algorithm. 11(4), 32:1–32:42 (2015). https://doi.org/10.1145/2629341
Angelini, P., Rutter, I., T.P., S.: Extending partial orthogonal drawings (2020). https://arxiv.org/abs/2008.10280
Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. Comput. Geom. 55, 26–40 (2016). https://doi.org/10.1016/j.comgeo.2016.03.001
Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. ACM Trans. Algorithm. 12(3), 33:1–33:32 (2016). https://doi.org/10.1145/2838736
Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs. J. Graph Algorithm. Appl. 19(2), 681–706 (2015). https://doi.org/10.7155/jgaa.00375
Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_12
Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. J. Graph Theory 91(4), 365–394 (2019). https://doi.org/10.1002/jgt.22436
de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the place. Int. J. Comput. Geom. Appl. 22(3), 187–205 (2012)
Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998). https://doi.org/10.1137/S0097539794262847
Didimo, W., Liotta, G.: Computing orthogonal drawings in a variable embedding setting. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 80–89. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6_10
Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. In: Chawla, S. (ed.) Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pp. 806–825. SIAM (2020). https://doi.org/10.1137/1.9781611975994.49
Duncan, C.A., Goodrich, M.T.: Planar orthogonal and polyline drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 223–246. Chapman and Hall/CRC (2013)
Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending partial 1-planar drawings. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 43:1–43:19. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.43, https://drops.dagstuhl.de/opus/volltexte/2020/12450
Eppstein, D.: Graph-theoretic solutions to computational geometry problems. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11409-0_1
Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021809
Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.1137/S0097539794277123
Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013). https://doi.org/10.1016/j.comgeo.2012.07.005
Klavík, P., et al.: Extending partial representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2016). https://doi.org/10.1007/s00453-016-0133-z
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. Theor. Comput. Sci. 576, 85–101 (2015). https://doi.org/10.1016/j.tcs.2015.02.007
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. Algorithmica 78(3), 945–967 (2016). https://doi.org/10.1007/s00453-016-0186-z
Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discret. Math. 5(3), 422–427 (1992). https://doi.org/10.1137/0405033
Krawczyk, T., Walczak, B.: Extending partial representations of trapezoid graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 358–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_27
Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs Comb. 17, 717–728 (2001)
Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006). https://doi.org/10.1142/S0129054106004261
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. J. Comput. 16(3), 421–444 (1987)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Angelini, P., Rutter, I., Sandhya, T.P. (2020). Extending Partial Orthogonal Drawings. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-68766-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68765-6
Online ISBN: 978-3-030-68766-3
eBook Packages: Computer ScienceComputer Science (R0)