Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extending Partial Orthogonal Drawings

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2020)

Abstract

We study the planar orthogonal drawing style within the framework of partial representation extension. Let \((G,H,\varGamma _H)\) be a partial orthogonal drawing, i.e., G is a graph, \(H\subseteq G\) is a subgraph and \(\varGamma _H\) is a planar orthogonal drawing of H.

We show that the existence of an orthogonal drawing \(\varGamma _G\) of G that extends \(\varGamma _H\) can be tested in linear time. If such a drawing exists, then there also is one that uses O(|V(H)|) bends per edge. On the other hand, we show that it is NP-complete to find an extension that minimizes the number of bends or has a fixed number of bends per edge.

The full version of this article is available at ArXiv [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelini, P., et al.: Simultaneous orthogonal planarity. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 532–545. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_41

    Chapter  Google Scholar 

  2. Angelini, P., et al.: Testing planarity of partially embedded graphs. ACM Trans. Algorithm. 11(4), 32:1–32:42 (2015). https://doi.org/10.1145/2629341

    Article  MathSciNet  MATH  Google Scholar 

  3. Angelini, P., Rutter, I., T.P., S.: Extending partial orthogonal drawings (2020). https://arxiv.org/abs/2008.10280

  4. Bläsius, T., Lehmann, S., Rutter, I.: Orthogonal graph drawing with inflexible edges. Comput. Geom. 55, 26–40 (2016). https://doi.org/10.1016/j.comgeo.2016.03.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. ACM Trans. Algorithm. 12(3), 33:1–33:32 (2016). https://doi.org/10.1145/2838736

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing partially embedded and simultaneously planar graphs. J. Graph Algorithm. Appl. 19(2), 681–706 (2015). https://doi.org/10.7155/jgaa.00375

    Article  MathSciNet  MATH  Google Scholar 

  7. Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_12

    Chapter  Google Scholar 

  8. Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. J. Graph Theory 91(4), 365–394 (2019). https://doi.org/10.1002/jgt.22436

    Article  MathSciNet  MATH  Google Scholar 

  9. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the place. Int. J. Comput. Geom. Appl. 22(3), 187–205 (2012)

    Article  Google Scholar 

  10. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998). https://doi.org/10.1137/S0097539794262847

    Article  MathSciNet  MATH  Google Scholar 

  11. Didimo, W., Liotta, G.: Computing orthogonal drawings in a variable embedding setting. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 80–89. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6_10

    Chapter  Google Scholar 

  12. Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. In: Chawla, S. (ed.) Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA’20), pp. 806–825. SIAM (2020). https://doi.org/10.1137/1.9781611975994.49

  13. Duncan, C.A., Goodrich, M.T.: Planar orthogonal and polyline drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 223–246. Chapman and Hall/CRC (2013)

    Google Scholar 

  14. Eiben, E., Ganian, R., Hamm, T., Klute, F., Nöllenburg, M.: Extending partial 1-planar drawings. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 168, pp. 43:1–43:19. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ICALP.2020.43, https://drops.dagstuhl.de/opus/volltexte/2020/12450

  15. Eppstein, D.: Graph-theoretic solutions to computational geometry problems. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 1–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11409-0_1

    Chapter  Google Scholar 

  16. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021809

    Chapter  Google Scholar 

  17. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.1137/S0097539794277123

    Article  MathSciNet  MATH  Google Scholar 

  18. Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013). https://doi.org/10.1016/j.comgeo.2012.07.005

    Article  MathSciNet  MATH  Google Scholar 

  19. Klavík, P., et al.: Extending partial representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2016). https://doi.org/10.1007/s00453-016-0133-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. Theor. Comput. Sci. 576, 85–101 (2015). https://doi.org/10.1016/j.tcs.2015.02.007

    Article  MathSciNet  MATH  Google Scholar 

  21. Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. Algorithmica 78(3), 945–967 (2016). https://doi.org/10.1007/s00453-016-0186-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discret. Math. 5(3), 422–427 (1992). https://doi.org/10.1137/0405033

    Article  MathSciNet  MATH  Google Scholar 

  23. Krawczyk, T., Walczak, B.: Extending partial representations of trapezoid graphs. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 358–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6_27

    Chapter  Google Scholar 

  24. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs Comb. 17, 717–728 (2001)

    Article  MathSciNet  Google Scholar 

  25. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006). https://doi.org/10.1142/S0129054106004261

    Article  MathSciNet  MATH  Google Scholar 

  26. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. J. Comput. 16(3), 421–444 (1987)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Sandhya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angelini, P., Rutter, I., Sandhya, T.P. (2020). Extending Partial Orthogonal Drawings. In: Auber, D., Valtr, P. (eds) Graph Drawing and Network Visualization. GD 2020. Lecture Notes in Computer Science(), vol 12590. Springer, Cham. https://doi.org/10.1007/978-3-030-68766-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68766-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68765-6

  • Online ISBN: 978-3-030-68766-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics