Abstract
A trapezoid graph is an intersection graph of trapezoids spanned between two horizontal lines. The partial representation extension problem for trapezoid graphs is a generalization of the recognition problem: given a graph G and an assignment \(\xi \) of trapezoids to some vertices of G, can \(\xi \) be extended to a trapezoid intersection model of the entire graph G? We show that this can be decided in polynomial time. Thus, we determine the complexity of partial representation extension for one of the two major remaining classes of geometric intersection graphs for which it has been unknown (circular-arc graphs being the other).
The authors were partially supported by National Science Center of Poland grant 2015/17/B/ST6/01873.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), Article 32 (2015)
Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), Article 16 (2016)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)
Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 131–142. Springer, Cham (2013). doi:10.1007/978-3-319-03841-4_12
Cogis, O.: On the Ferrers dimension of a digraph. Discrete Math. 38(1), 47–52 (1982)
Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in \(O(E\log D)\) time. Combinatorica 21(1), 5–12 (2001)
Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994). doi:10.1007/BFb0017474
Dagan, I., Golumbic, M.C., Pinter, R.Y.: Trapezoid graphs and their coloring. Discrete Appl. Math. 21(1), 35–46 (1988)
Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)
Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63(3), 600–610 (1941)
Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity flow problems. SIAM J. Comput. 5(4), 691–703 (1976)
Felsner, S., Habib, M., Möhring, R.H.: On the interplay between interval dimension and dimension. SIAM J. Discrete Math. 7(1), 22–40 (1994)
Fiala, J.: NP-completeness of the edge precoloring extension problem on bipartite graphs. J. Graph Theory 43(2), 156–160 (2003)
Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hung. 18(1–2), 25–66 (1967)
Ghouila-Houri, A.: Caractérisation des graphes non orientés dont on peut orienter les arrêtes de manière à obtenir le graphe d’une relation d’ordre. C. R. Acad. Sci. 254, 1370–1371 (1962)
Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Canad. J. Math. 16, 539–548 (1964)
Golumbic, M.C.: The complexity of comparability graph recognition and coloring. Computing 18(3), 199–208 (1977)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Habib, M., Kelly, D., Möhring, R.H.: Interval dimension is a comparability invariant. Discrete Math. 88(2–3), 211–229 (1991)
James, L.O., Stanton, R.G., Cowan, D.D.: Graph decomposition for undirected graphs. In: Hoffman, F., Levow, R.B., Thomas, R.S.D. (eds.) 3rd Southeastern Conference on Combinatorics, Graph Theory, and Computing (CGTC 1972). Congressus Numerantium, vol. 6, pp. 281–290. Utilitas Mathematica, Winnipeg (1972)
Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discrete Comput. Geom. 47(3), 548–568 (2012)
Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33090-2_58
Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2017)
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. Theor. Comput. Sci. 576, 85–101 (2015)
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. Algorithmica 78(3), 945–967 (2017)
Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending partial representations of interval graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20877-5_28
Kratochvíl, J.: String graphs. II. Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52(1), 67–78 (1991)
Kratochvíl, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994)
Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Combin. Theory Ser. B 62(2), 289–315 (1994)
Ma, T.H., Spinrad, J.P.: On the 2-chain subgraph cover and related problems. J. Algorithms 17(2), 251–268 (1994)
Marx, D.: NP-completeness of list coloring and precoloring extension on the edges of planar graphs. J. Graph Theory 49(4), 313–324 (2005)
McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003)
McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1–3), 189–241 (1999)
Mertzios, G.B., Corneil, D.G.: Vertex splitting and the recognition of trapezoid graphs. Discrete Appl. Math. 159(11), 1131–1147 (2011)
Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1974)
Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in NP. J. Comput. Syst. Sci. 67(2), 365–380 (2003)
Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D. (ed.) 1st Annual ACM-SIAM Symposium Discrete Algorithms (SODA 1990), pp. 138–148. SIAM, Philadelphia (1990)
Spinrad, J.P.: Recognition of circle graphs. J. Algorithms 16(2), 264–282 (1994)
Spinrad, J.P.: Efficient Graph Representations, Field Institute Monographs, vol. 19. AMS, Providence (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Krawczyk, T., Walczak, B. (2017). Extending Partial Representations of Trapezoid Graphs. In: Bodlaender, H., Woeginger, G. (eds) Graph-Theoretic Concepts in Computer Science. WG 2017. Lecture Notes in Computer Science(), vol 10520. Springer, Cham. https://doi.org/10.1007/978-3-319-68705-6_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-68705-6_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68704-9
Online ISBN: 978-3-319-68705-6
eBook Packages: Computer ScienceComputer Science (R0)