Abstract
PRINCE is a widely analyzed block cipher proposed in 2012. Subspace trail cryptanalysis is a new cryptanalytic technique to generalize the invariant subspace attack. So far, two subspace trails that exist with probability 1 are known for 2.5 rounds of PRINCE. In this paper, we first describe a new non-random property for 4.5 rounds of PRINCE based on subspace trail with certain probability, which is independent of the secret key, the details of the Linear layer and of the S-Box layer. Then, we obtain that by appropriate choices of difference for a number of input pairs, it is possible to make sure that the number of times that the difference of the resulting output pairs lie in a particular subspace is always a multiple of 8. Later, a detailed proof is given as why it has to exist. Relying on this property, a new distinguisher can be set up to distinguish the 4.5-round PRINCE from a random permutation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_14
Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_12
Knudsen, L., Leander, G., Poschmann, A., Robshaw, M.J.B.: PRINTcipher: a block cipher for IC-printing. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 16–32. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_2
Bulygin, S., Walter, M., Buchmann, J.: Full analysis of PRINTcipher with respect to invariant subspace attack: efficient key recovery and countermeasures. Des. Codes Crypt. 73(3), 997–1022 (2014)
Leander, G., Minaud, B., Rønjom, S.: A generic approach to invariant subspace attacks: cryptanalysis of Robin, iSCREAM and Zorro. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 254–283. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_11
Grosso, V., Leurent, G., Standaert, F.X., et al.: SCREAM & iSCREAM. Entry in the CAESAR competition (2014). http://competitions.cr.yp.to/round1/screamv1.pdf
Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-designs: bitslice encryption for efficient masked software implementations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_2
Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_22
Guo, J., Jean, J., Nikolic, I., et al.: Invariant subspace attack against Midori64 and the resistance criteria for S-box designs. IACR Trans. Symmetric Cryptol. 2016(1), 33–56 (2016)
Banik, S., et al.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_17
Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against invariant attacks: how to choose the round constants. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 647–678. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_22
Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_1
Wei, Y., Ye, T., Wu, W., Pasalic, E.: Generalized nonlinear invariant attack and the new design criterion for round constants. IACR Trans. Symmetric Cryptol. 2018(4), 62–79 (2018)
Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its applications to AES. IACR Trans. Symmetric Cryptol. 2016(2), 192–225 (2016)
Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of 5-round AES. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 289–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_10
Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_10
Morawiecki, P.: Practical attacks on the round-reduced PRINCE. IET Inf. Secur. 11(3), 146–151 (2017)
Posteuca, R., Negara, G.: Integral cryptanalysis of round-reduced PRINCE cipher. Proc. Rom. Acad. 2015(16), 265–270 (2015)
Abed, F., List, E., Lucks, S.: On the security of the core of PRINCE against biclique and differential cryptanalysis. Cryptology ePrint Archive, Report 2016/712 (2016)
Zhao, G., Sun, B., Li, C., Su, J.: Truncated differential cryptanalysis of PRINCE. Secur. Commun. Netw. 8(16), 2875–2887 (2015)
Soleimany, H., et al.: Reflection cryptanalysis of PRINCE-like ciphers. J. Cryptol. 28(3), 718–744 (2013). https://doi.org/10.1007/s00145-013-9175-4
Grassi, L., Rechberger, C.: Practical low data-complexity subspace-trail cryptanalysis of round-reduced PRINCE. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 322–342. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_18
Acknowledgements
The authors would like to thank all anonymous referees for their valuable comments. This work is supported by National Natural Science Foundation of China (No. 61672509, No. 62072445), and the National Cryptography Development Foundation of China (no. MMJJ20170101).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, B., Song, C., Wu, W., Zhang, L. (2021). A New Non-random Property of 4.5-Round PRINCE. In: Hong, D. (eds) Information Security and Cryptology – ICISC 2020. ICISC 2020. Lecture Notes in Computer Science(), vol 12593. Springer, Cham. https://doi.org/10.1007/978-3-030-68890-5_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-68890-5_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-68889-9
Online ISBN: 978-3-030-68890-5
eBook Packages: Computer ScienceComputer Science (R0)