Abstract
The RDF Stream Processing (RSP) community has proposed several models and languages for continuously querying and reasoning over RDF streams over the last decade. They each have their semantics, making them hard to compare. The variety of approaches has fostered both empirical and theoretical research and led to the design of RSPQL, i.e., a unifying model for RSP. However, an RSP API for the development under RSPQL semantics was still missing. RSP community would benefit from an RSP API because it can foster comparable and reproducible research by providing programming abstractions based on RSPQL semantics. Moreover, it can encourage further development and in-use research. Finally, it can stimulate practical activities such as tutorials, lectures, and challenges, e.g., during the Stream Reasoning Workshop.
In this paper, we present RSP4J, a flexible API for the development of RSP engines and applications under RSPQL semantics. RSP4J offers all the necessary abstractions required for fast-prototyping of RSP engines under the proposed RSPQL semantics. Users can configure it to reproduce the variety of RSP engine behaviors in a comparable software environment. To promote systematic and comparative research, RSP4J is open-source, provides canonical citation, permanent web identifiers, and a comprehensive user guide for developers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
also known as execution semantics.
- 2.
- 3.
- 4.
- 5.
For a comprehensive analysis we suggest [21].
- 6.
The current window identified by \(\mathbb {W}\) with the oldest closing time instant at t.
- 7.
- 8.
- 9.
The RSP W3C Community group has started working towards a common syntax and semantics for RSP (https://github.com/streamreasoning/RSP-QL).
- 10.
Slowly evolving RDF graph are represented as a (named) Time-Varying Graph too.
- 11.
RSPQL determines the evaluation time instant set ET wrt the reporting policy and the input data. Instead, RSP4J serves time as it receives data, i.e., by consuming the streams. Thus, RSP4J ’s ET is built progressively. While the RSPQL’s ET is deterministic, RSP4J ET might not be deterministic in case of distributed computations.
- 12.
- 13.
References
Affetti, L., Tommasini, R., Margara, A., Cugola, G., Della Valle, E.: Defining the execution semantics of stream processing engines. J. Big Data 4, 12 (2017)
Akidau, T., et al.: The dataflow model: a practical approach to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing (2015)
Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC 2015, Part II. LNCS, vol. 9367, pp. 374–389. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_25
Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142(2006)
Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL: a continuous query language for RDF data streams. Int. J. Semant. Comput. 4(1), 3–25 (2010)
Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: a logic-based framework for analyzing reasoning over streams. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 25–30 Jan 2015, Austin, Texas, USA, pp. 1431–1438. AAAI Press (2015)
Botan, I., Derakhshan, R., Dindar, N., Haas, L.M., Miller, R.J., Tatbul, N.: SECRET: a model for analysis of the execution semantics of stream processing systems. PVLDB 3(1), 232–243 (2010)
Calbimonte, J.P., Jeung, H., Corcho, O., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. (IJSWIS) 8(1), 43–63 (2012)
Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)
Della Valle, E., Dell’Aglio, D., Margara, A.: Taming velocity and variety simultaneously in big data with stream reasoning. In: DEBS, pp. 394–401. ACM (2016)
Della Valle, E., Tommasini, R., Balduini, M.: Engineering of web stream processing applications. In: d’Amato, C., Theobald, M. (eds.) Reasoning Web 2018. LNCS, vol. 11078, pp. 223–226. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00338-8_8
Dell’Aglio, D., Calbimonte, J.-P., Balduini, M., Corcho, O., Della Valle, E.: On correctness in RDF stream processor benchmarking. In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 326–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_21
Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)
Dell’Aglio, D., Della Valle, E., Calbimonte, J., Corcho, Ó.: RSP-QL semantics: a unifying query model to explain heterogeneity of RDF stream processing systems. Int. J. Semant. Web Inf. Syst. 10(4), 17–44 (2014)
Falzone, E., Tommasini, R., Della Valle, E.: Stream reasoning: from theory to practice. In: Manna, M., Pieris, A. (eds.) Reasoning Web 2020. LNCS, vol. 12258, pp. 85–108. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60067-9_4
Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Semant. Web 2(1), 11–21 (2011)
Karau, H.: Unifying the open big data world: the possibilities\({_\ast }\) of apache BEAM. In: 2017 IEEE International Conference on Big Data, BigData 2017, Boston, MA, USA, 11–14 Dec 2017, p. 3981. IEEE Computer Society (2017)
Kolchin, M., Wetz, P., Kiesling, E., Tjoa, A.M.: YABench: a comprehensive framework for RDF stream processor correctness and performance assessment. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 280–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8_16
Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_24
Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The OWL reasoner evaluation (ORE) 2015 competition report. J. Autom. Reasoning 59(4), 455–482 (2017)
Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. (TODS) 34(3), 1–45 (2009)
Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked stream data processing engines: facts and figures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 300–312. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35173-0_20
Ren, X., Curé, O.: Strider: a hybrid adaptive distributed RDF stream processing engine. In: d’Amato, C., et al. (eds.) ISWC 2017, Part I. LNCS, vol. 10587, pp. 559–576. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_33
Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven commandments for benchmarking semantic flow processing systems. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 305–319. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_21
Terry, D.B., Goldberg, D., Nichols, D.A., Oki, B.M.: Continuous queries over append-only databases. In: Proceedings of the 1992 ACM SIGMOD International Conference on Management of Data, San Diego, California, USA, 2–5 June 1992, pp. 321–330. ACM Press (1992)
Tommasini, R., Balduini, M., Della Valle, E.: Towards a benchmark for expressive stream reasoning. In: Joint Proceedings of RSP and QuWeDa Workshops co-located with 14th ESWC 2017, vol. 1870, pp. 26–36 (2017)
Tommasini, R., Della Valle, E., Balduini, M., Dell’Aglio, D.: Heaven: a framework for systematic comparative research approach for RSP engines. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 250–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_16
Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: RSPLab: RDF stream processing benchmarking made easy. In: d’Amato, C., et al. (eds.) ISWC 2017, Part II. LNCS, vol. 10588, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_21
Tommasini, R., Ragab, M., Falcetta, A., Valle, E.D., Sakr, S.: A first step towards a streaming linked data life-cycle. In: Pan, J.Z., Pan, J.Z., et al. (eds.) ISWC 2020, Part II. LNCS, vol. 12507, pp. 634–650. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_39
Tommasini, R., et al.: VoCaLS: vocabulary and catalog of linked streams. In: Vrandečić, D., et al. (eds.) ISWC 2018, Part II. LNCS, vol. 11137, pp. 256–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_16
Walavalkar, O., Joshi, A., Finin, T., Yesha, Y., et al.: Streaming knowledge bases. In: Proceedings of the Fourth International Workshop on Scalable Semantic Web knowledge Base Systems (2008)
Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: a streaming RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-1_40
Acknowledgment
Dr. Tommasini acknowledges support from the European Social Fund via IT Academy program, and from the European Regional Development Funds via the Mobilitas Plus programme (grant MOBTT75). Moreover, the authors would like to acknowledge the support of Robin Keskisärkkä and Daniele Dell’Aglio in earlier versions of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Tommasini, R., Bonte, P., Ongenae, F., Della Valle, E. (2021). RSP4J: An API for RDF Stream Processing. In: Verborgh, R., et al. The Semantic Web. ESWC 2021. Lecture Notes in Computer Science(), vol 12731. Springer, Cham. https://doi.org/10.1007/978-3-030-77385-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-030-77385-4_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77384-7
Online ISBN: 978-3-030-77385-4
eBook Packages: Computer ScienceComputer Science (R0)