Abstract
The diverse research efforts in recent years in the area of stream reasoning (SR) led to a wide range of SR engines. However, the lack of standardization and the diverse choices in SR (e.g., tuple-driven vs. time-driven engines, streaming all results vs. newly derived ones, ...) mean that real comparability among the engines is hardly given. A first step towards achieving comparability and standardization is the RSP-QL model, implemented in the RSP4J framework, which allows for describing and formalizing the semantics of SR engines. To further advance the state of the art in comparative research of stream reasoning, we present the results of a survey to quantify the in-use importance of several key performance indicators (KPIs) and features and compare SR engines along these KPIs with the CityBench and the CSRBench oracle. Our analysis shows that the two RSP4J implementations C-SPARQL2.0 and YASPER outperform the well-known C-SPARQL implementation in terms of performance and configurability. Our comparison against a naive SR extension of the incremental reasoning engine RDFox shows that SR engines still have potential for improvement. To avoid a costly integration of engines into several different benchmarking environments, we finally present a unifying interface, already aligned with the CityBench and CSRBench, for benchmarking SR engines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
The tick interval of 15 milliseconds was chosen experimentally as it was a good trade-off between low latency and not putting too much load on the engine.
- 9.
- 10.
- 11.
- 12.
C-SPARQL2.0 commit number: f682cdc427d85594b39f9b4aa8d86e04833c8368,
YASPER commit number: aea74443955e1ab3b95de7b0ef65f7c1dbd51d08,
C-SPARQL commit number 4be27dd5ca23550da6bf7fb4e3420b0eb75132f0.
- 13.
- 14.
- 15.
- 16.
References
Ali, M.I., Gao, F., Mileo, A.: CityBench: a configurable benchmark to evaluate RSP engines using smart city datasets. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 374–389. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_25
Aranda, C.B., et al.: SPARQL 1.1 overview. W3C recommendation, W3C (2013). https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
Arasu, A., et al.: STREAM: the Stanford data stream management system. In: Data Stream Management. DSA, pp. 317–336. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-540-28608-0_16
Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL: a continuous query language for RDF data streams. Int. J. Semant. Comput. 4(01), 3–25 (2010)
Botan, I., Derakhshan, R., Dindar, N., Haas, L., Miller, R.J., Tatbul, N.: Secret: a model for analysis of the execution semantics of stream processing systems. Proc. VLDB Endow. 3(1–2), 232–243 (2010)
Calbimonte, J.-P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to streaming data sources. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 96–111. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_7
Dao-Tran, M., Beck, H., Eiter, T.: Contrasting RDF stream processing semantics. In: Qi, G., Kozaki, K., Pan, J.Z., Yu, S. (eds.) JIST 2015. LNCS, vol. 9544, pp. 289–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31676-5_21
Dell’Aglio, D., Della Valle, E., Calbimonte, J.P., Corcho, O.: RSP-QL semantics: a unifying query model to explain heterogeneity of RDF stream processing systems. Int. J. Semant. Web Inf. Syst. 10, 17–44 (2014). https://doi.org/10.4018/ijswis.2014100102
Dell’Aglio, D., Calbimonte, J.P., Balduini, M., Corcho, O., Della Valle, E.: On correctness in RDF stream processor benchmarking. In: Alani, H., et al. (eds.) Semantic Web Conference, pp. 326–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_21
Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning: a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)
D’Aniello, G., Gaeta, M., Orciuoli, F.: An approach based on semantic stream reasoning to support decision processes in smart cities. Telemat. Inform. 35(1), 68–81 (2018). https://doi.org/10.1016/j.tele.2017.09.019. https://www.sciencedirect.com/science/article/pii/S0736585317304768
Giustozzi, F., Saunier, J., Zanni-Merk, C.: Abnormal situations interpretation in industry 4.0 using stream reasoning. Procedia Comput. Sci. 159, 620–629 (2019). https://doi.org/10.1016/j.procs.2019.09.217. https://www.sciencedirect.com/science/article/pii/S1877050919314012. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019
Glimm, B., Ogbuji, C.: SPARQL 1.1 entailment regimes. W3C recommendation, W3C (2013). https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
Kolchin, M., Wetz, P., Kiesling, E., Tjoa, A.M.: YABench: a comprehensive framework for RDF stream processor correctness and performance assessment. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 280–298. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8_16
Lachhab, F., Bakhouya, M., Ouladsine, R., Essaaidi, M.: Performance evaluation of linked stream data processing engines for situational awareness applications. Concurr. Comput. Pract. Exp. 30(12), e4380 (2018)
Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6_24
Nenov, Y., Piro, R., Motik, B., Horrocks, I., Wu, Z., Banerjee, J.: RDFox: a highly-scalable RDF store. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_1
Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_3
Raimond, Y., Schreiber, G.: RDF 1.1 primer. W3C note, W3C (2014). https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
Ren, X., Khrouf, H., Kazi-Aoul, Z., Chabchoub, Y., Curé, O.: On measuring performances of C-SPARQL and CQELS. arXiv preprint arXiv:1611.08269 (2016)
Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven commandments for benchmarking semantic flow processing systems. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 305–319. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_21
Su, X., Gilman, E., Wetz, P., Riekki, J., Zuo, Y., Leppänen, T.: Stream reasoning for the internet of things: challenges and gap analysis. In: Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics, WIMS 2016. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2912845.2912853
Tommasini, R., Bonte, P., Ongenae, F., Della Valle, E.: RSP4J: an API for RDF stream processing. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 565–581. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_34
Tommasini, R., Della Valle, E.: Yasper 1.0: towards an RSP-QL engine. In: International Semantic Web Conference (Posters, Demos & Industry Tracks) (2017)
Tommasini, R., Della Valle, E., Balduini, M., Dell’Aglio, D.: Heaven: a framework for systematic comparative research approach for RSP engines. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 250–265. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_16
Tommasini, R., Della Valle, E., Mauri, A., Brambilla, M.: RSPLab: RDF stream processing benchmarking made easy. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_21
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gruber, N., Glimm, B. (2023). A Comparative Study of Stream Reasoning Engines. In: Pesquita, C., et al. The Semantic Web. ESWC 2023. Lecture Notes in Computer Science, vol 13870. Springer, Cham. https://doi.org/10.1007/978-3-031-33455-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-33455-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33454-2
Online ISBN: 978-3-031-33455-9
eBook Packages: Computer ScienceComputer Science (R0)