Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

FLM-2A: Towards Automated HCI Modeling of Android Applications Based on a Modified Version of the Keystroke Level Model

  • Conference paper
  • First Online:
Human-Computer Interaction. Theory, Methods and Tools (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12762))

Included in the following conference series:

Abstract

Keystroke-Level Model (KLM) is an established HCI model for predicting users’ time on task. KLM was originally developed for desktop systems, but it has been extended for different interaction contexts. Fingerstroke-Level Model (FLM) is such an extension for touch-sensitive interactions with direct finger movements. This paper presents a novel tool, named FLM for Android Apps (FLM-2A), that supports automated FLM modeling of tasks performed in Android apps. The tool aims to support design and evaluation of Android apps in an effective and efficient manner. A study investigated the accuracy of FLM-2A predictions by comparing them to participants’ interaction times for three custom-built Android apps. Results showed that the error rate for the FLM-2A predictions with Fitts’ Law enabled were 0.3% and 2.8% for the first and second apps respectively. However, the error rate for the third custom-built Android app was 40.0%, indicating that additional steps are required to finetune the FLM-2A predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/cogtool.

  2. 2.

    https://github.com/CogWorks/SANLab-CM.

  3. 3.

    https://cogulator.io.

  4. 4.

    http://klmformanalyzer.weebly.com.

  5. 5.

    http://appium.io.

  6. 6.

    https://developer.android.com/studio/releases/platform-tools.

  7. 7.

    https://developer.android.com/studio/command-line/adb.

  8. 8.

    http://appium.io/docs/en/writing-running-appium/caps.

  9. 9.

    https://www.selenium.dev/documentation/en/webdriver/web_element.

References

  1. Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction. Lawrence Erlbaum Associates (1983)

    Google Scholar 

  2. Jimenez, Y., Morreale, P.: Design and evaluation of a predictive model for smartphone selection. In: Marcus, A. (ed.) DUXU 2013. LNCS, vol. 8015, pp. 376–384. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39253-5_41

    Chapter  Google Scholar 

  3. Kieras, D.: Using the keystroke-level model to estimate execution times (2001)

    Google Scholar 

  4. Lee, A., Song, K., Ryu, H.B., Kim, J., Kwon, G.: Fingerstroke time estimates for touchscreen-based mobile gaming interaction. Hum. Mov. Sci. 44, 211–224 (2015). https://doi.org/10.1016/j.humov.2015.09.003

    Article  Google Scholar 

  5. Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user performance time with interactive systems. Commun. ACM 23, 396–410 (1980). https://doi.org/10.1145/358886.358895

    Article  Google Scholar 

  6. John, B.E., Suzuki, S.: Toward cognitive modeling for predicting usability. In: Jacko, J.A. (ed.) HCI 2009. LNCS, vol. 5610, pp. 267–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02574-7_30

    Chapter  Google Scholar 

  7. Holleis, P., Otto, F., Hussmann, H., Schmidt, A.: Keystroke-level model for advanced mobile phone interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1505–1514. ACM, New York (2007). https://doi.org/10.1145/1240624.1240851

  8. Holleis, P., Scherr, M., Broll, G.: A revised mobile KLM for interaction with multiple NFC-tags. In: Proceedings of the 13th IFIP TC 13 International Conference on Human-Computer Interaction - Volume Part IV, pp. 204–221. Springer, Heidelberg (2011)

    Google Scholar 

  9. Li, H., Liu, Y., Liu, J., Wang, X., Li, Y., Rau, P.-L.P.: Extended KLM for mobile phone interaction: a user study result. In: CHI 2010 Extended Abstracts on Human Factors in Computing Systems, pp. 3517–3522. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1753846.1754011

  10. Rice, A.D., Lartigue, J.W.: Touch-level model (TLM): evolving KLM-GOMS for touchscreen and mobile devices. In: Proceedings of the 2014 ACM Southeast Regional Conference, pp. 1–6. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2638404.2638532

  11. Song, K., et al.: The fingerstroke-level model strikes back: a modified keystroke-level model in developing a gaming UI for 4G networks. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 2359–2362. ACM, New York (2013). https://doi.org/10.1145/2468356.2468769

  12. Al-Megren, S., Altamimi, W., Al-Khalifa, H.S.: Blind FLM: an enhanced keystroke-level model for visually impaired smartphone interaction. In: Bernhaupt, R., Dalvi, G., Joshi, A., Balkrishan, D.K., O’Neill, J., Winckler, M. (eds.) INTERACT 2017. LNCS, vol. 10513, pp. 155–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67744-6_10

    Chapter  Google Scholar 

  13. Al-Megren, S.: A predictive fingerstroke-level model for smartwatch interaction. Multimodal Technol. Interact. 2, 38 (2018). https://doi.org/10.3390/mti2030038

    Article  Google Scholar 

  14. John, B.E., Prevas, K., Salvucci, D.D., Koedinger, K.: Predictive human performance modeling made easy. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 455–462. ACM, Vienna (2004). https://doi.org/10.1145/985692.985750

  15. Anderson, J.R., Lebiere, C.J.: The Atomic Components of Thought. Psychology Press, Mahwah (1998)

    Google Scholar 

  16. Bellamy, R., John, B., Richards, J., Thomas, J.: Using CogTool to model programming tasks. In: Evaluation and Usability of Programming Languages and Tools, pp. 1–6. Association for Computing Machinery, New York (2010). https://doi.org/10.1145/1937117.1937118

  17. Bellamy, R., John, B., Kogan, S.: Deploying CogTool: integrating quantitative usability assessment into real-world software development. In: 2011 33rd International Conference on Software Engineering (ICSE), pp. 691–700 (2011). https://doi.org/10.1145/1985793.1985890

  18. Teo, L., John, B.E.: Cogtool-explorer: towards a tool for predicting user interaction. In: CHI 2008 extended abstracts on Human Factors in Computing Systems, pp. 2793–2798. ACM, Florence (2008). https://doi.org/10.1145/1358628.1358763

  19. Patton, E.W., Gray, W.D.: SANLab-CM: a tool for incorporating stochastic operations into activity network modeling. Behav. Res. Methods 42, 877–883 (2010). https://doi.org/10.3758/BRM.42.3.877

    Article  Google Scholar 

  20. Gray, W.D., John, B.E., Atwood, M.E.: The precis of Project Ernestine or an overview of a validation of GOMS. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 307–312. Association for Computing Machinery, New York (1992). https://doi.org/10.1145/142750.142821

  21. John, B.E., Patton, E.W., Gray, W.D., Morrison, D.F.: Tools for predicting the duration and variability of skilled performance without skilled performers. Proc. Hum. Factors Ergon. Soc. Ann. Meeting. 56, 985–989 (2012). https://doi.org/10.1177/1071181312561206

    Article  Google Scholar 

  22. Wilkins, S.A.: Examination of pilot benefits from cognitive assistance for single-pilot general aviation operations. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), pp. 1–9 (2017). https://doi.org/10.1109/DASC.2017.8101987

  23. Karousos, N., Katsanos, C., Tselios, N., Xenos, M.: Effortless tool-based evaluation of web form filling tasks using Keystroke Level Model and Fitts Law. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 1851–1856. ACM, New York (2013). https://doi.org/10.1145/2468356.2468688

  24. Katsanos, C., Karousos, N., Tselios, N., Xenos, M., Avouris, N.: KLM form analyzer: automated evaluation of web form filling tasks using human performance models. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8118, pp. 530–537. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40480-1_36

    Chapter  Google Scholar 

  25. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381 (1954)

    Article  Google Scholar 

  26. Katsanos, C., Xenos, M., Tselios, N., Karousos, N.: Tool-mediated HCI modelling instruction: evidence from three studies. Behav. Inf. Technol. (2020). https://doi.org/10.1080/0144929X.2020.1790661

    Article  Google Scholar 

  27. Katsanos, C., Xenos, M., Tselios, N.: Tool-mediated HCI modeling instruction in a campus-based software quality course. In: Kurosu, M. (ed.) HCI 2018. LNCS, vol. 10901, pp. 114–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91238-7_10

    Chapter  Google Scholar 

  28. Katsanos, C., Tselios, N., Karousos, N., Xenos, M.: Learning web form design by using the KLM Form Analyzer: a case study. In: Proceedings of the 19th Panhellenic Conference on Informatics, pp. 44–49. ACM, New York (2015). https://doi.org/10.1145/2801948.2801990

  29. Karousos, N., Tatsis, F., Karousos, D., Katsanos, C., Tselios, N., Xenos, M.: WKLM-FA: a web application for automated human-computer interaction modeling of web form filling tasks. In: Proceedings of the 24th Panhellenic Conference on Informatics, pp. 183–187. ACM, New York (2020). https://doi.org/10.1145/3437120.3437303

  30. MacKenzie, I.S.: A note on the information-theoretic basis for Fitts’ Law. J. Mot. Behav. 21, 323–330 (1989). https://doi.org/10.1080/00222895.1989.10735486

    Article  Google Scholar 

  31. Luo, L., John, B.E.: Predicting task execution time on handheld devices using the keystroke-level model. In: CHI 2005 Extended Abstracts on Human Factors in Computing Systems, pp. 1605–1608. ACM, New York (2005). https://doi.org/10.1145/1056808.1056977

  32. Bi, X., Li, Y., Zhai, S.: FFitts law: modeling finger touch with fitts’ law. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1363–1372. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2470654.2466180

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Katsanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theofilou, S., Vardas, N., Katsanos, C. (2021). FLM-2A: Towards Automated HCI Modeling of Android Applications Based on a Modified Version of the Keystroke Level Model. In: Kurosu, M. (eds) Human-Computer Interaction. Theory, Methods and Tools. HCII 2021. Lecture Notes in Computer Science(), vol 12762. Springer, Cham. https://doi.org/10.1007/978-3-030-78462-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78462-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78461-4

  • Online ISBN: 978-3-030-78462-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics