Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Distributed Graph Problems Through an Automata-Theoretic Lens

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12810))

Abstract

The locality of a graph problem is the smallest distance T such that each node can choose its own part of the solution based on its radius-T neighborhood. In many settings, a graph problem can be solved efficiently with a distributed or parallel algorithm if and only if it has a small locality. In this work we seek to automate the study of solvability and locality: given the description of a graph problem \(\varPi \), we would like to determine if \(\varPi \) is solvable and what is the asymptotic locality of \(\varPi \) as a function of the size of the graph. Put otherwise, we seek to automatically synthesize efficient distributed and parallel algorithms for solving \(\varPi \). We focus on locally checkable graph problems; these are problems in which a solution is globally feasible if it looks feasible in all constant-radius neighborhoods. Prior work on such problems has brought primarily bad news: questions related to locality are undecidable in general, and even if we focus on the case of labeled paths and cycles, determining locality is \(\mathsf {PSPACE}\)-hard (Balliu et al. PODC 2019). We complement prior negative results with efficient algorithms for the cases of unlabeled paths and cycles and, as an extension, for rooted trees. We study locally checkable graph problems from an automata-theoretic perspective by representing a locally checkable problem \(\varPi \) as a nondeterministic finite automaton \(\mathcal {M}\) over a unary alphabet. We identify polynomial-time-computable properties of the automaton \(\mathcal {M}\) that near-completely capture the solvability and locality of \(\varPi \) in cycles and paths, with the exception of one specific case that is \(\text{ co- }\mathsf {NP}\)-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balliu, A., Brandt, S., Chang, Y.J., Olivetti, D., Rabie, M., Suomela, J.: The distributed complexity of locally checkable problems on paths is decidable. In: PODC 2019 (2019). https://doi.org/10.1145/3293611.3331606

  2. Balliu, A., et al.: Classification of distributed binary labeling problems. In: DISC 2020 (2020)

    Google Scholar 

  3. Balliu, A., Brandt, S., Hirvonen, J., Olivetti, D., Rabie, M., Suomela, J.: Lower bounds for maximal matchings and maximal independent sets. FOCS 2019, 481–497 (2019). https://doi.org/10.1109/FOCS.2019.00037

    Article  Google Scholar 

  4. Balliu, A., Brandt, S., Olivetti, D., Suomela, J.: Almost global problems in the LOCAL model. In: DISC 2018 (2018). https://doi.org/10.4230/LIPIcs.DISC.2018.9

  5. Balliu, A., Brandt, S., Olivetti, D., Suomela, J.: How much does randomness help with locally checkable problems? In: PODC 2020 (2020). https://doi.org/10.1145/3382734.3405715

  6. Balliu, A., Hirvonen, J., Korhonen, J.H., Lempiäinen, T., Olivetti, D., Suomela, J.: New classes of distributed time complexity. In: STOC 2018 (2018). https://doi.org/10.1145/3188745.3188860

  7. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. J. ACM 63(3), 20 (2016)

    Google Scholar 

  8. Brandt, S., et al.: A lower bound for the distributed Lovász local lemma. In: STOC 2016 (2016). https://doi.org/10.1145/2897518.2897570

  9. Brandt, S., et al.: LCL problems on grids. In: PODC 2017, (2017). https://doi.org/10.1145/3087801.3087833

  10. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi. Matematicko-fyzikálny časopis 14(3), 208–216 (1964), http://dml.cz/dmlcz/126647

  11. Chang, Y.J.: The complexity landscape of distributed locally checkable problems on trees. In: DISC 2020 (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.18

  12. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the local model. SIAM J. Comput. 48(1), 122–143 (2019). https://doi.org/10.1137/17M1117537

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, Y.J., Pettie, S.: A time hierarchy theorem for the LOCAL model. SIAM J. Comput. 48(1), 33–69 (2019). https://doi.org/10.1137/17M1157957

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, Y.J., Studený, J., Suomela, J.: Distributed graph problems through an automata-theoretic lens (2020), https://arxiv.org/abs/2002.07659

  15. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986). https://doi.org/10.1016/S0019-9958(86)80023-7

    Article  MathSciNet  MATH  Google Scholar 

  16. Don, H., Zantema, H.: Synchronizing non-deterministic finite automata. J. Automat. Lang. Comb. 23(4), 307–328 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3), 500–510 (1990). https://doi.org/10.1137/0219033

    Article  MathSciNet  MATH  Google Scholar 

  18. Fich, F.E., Ramachandran, V.: Lower bounds for parallel computation on linked structures. In: SPAA 1990 (1990). https://doi.org/10.1145/97444.97676

  19. Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy. In: DISC 2017 (2017). https://doi.org/10.4230/LIPIcs.DISC.2017.18

  20. Gazdag, Z., Iván, S., Nagy-György, J.: Improved upper bounds on synchronizing nondeterministic automata. Inf. Proces. Lett. 109(17), 986–990 (2009). https://doi.org/10.1016/j.ipl.2009.05.007

    Article  MathSciNet  MATH  Google Scholar 

  21. Ghaffari, M., Harris, D.G., Kuhn, F.: On derandomizing local distributed algorithms. In: FOCS 2018 (2018). https://doi.org/10.1109/FOCS.2018.00069

  22. Ghaffari, M., Su, H.H.: Distributed degree splitting, edge coloring, and orientations. In: SODA 2017 (2017). https://doi.org/10.1137/1.9781611974782.166

  23. Imreh, B., Ito, M.: On regular languages determined by nondeterministic directable automata. Acta Cybernet. 17(1), 1–10 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Imreh, B., Steinby, M.: Directable nondeterministic automata. Acta Cybernetica 14(1), 105–115 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992). https://doi.org/10.1137/0221015

    Article  MathSciNet  MATH  Google Scholar 

  26. Martyugin, P.: Computational complexity of certain problems related to carefully synchronizing words for partial automata and directing words for nondeterministic automata. Theor. Comput. Syst. 54(2), 293–304 (2013). https://doi.org/10.1007/s00224-013-9516-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995). https://doi.org/10.1137/S0097539793254571

    Article  MathSciNet  MATH  Google Scholar 

  28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000). https://doi.org/10.1137/1.9780898719772

    Article  Google Scholar 

  29. Pettie, S., Su, H.H.: Distributed algorithms for coloring triangle-free graphs. Inf. Comput. 243, 263–280 (2015)

    Article  Google Scholar 

  30. Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic networkdecomposition and distributed derandomization. In: STOC 2020 (2020). https://doi.org/10.1145/3357713.3384298

  31. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: STOC 1973 (1973). https://doi.org/10.1145/800125.804029

Download references

Acknowledgments

We would like to thank Alkida Balliu, Sebastian Brandt, Laurent Feuilloley, Juho Hirvonen, Yannic Maus, Dennis Olivetti, Aleksandr Tereshchenko, Jara Uitto, and all participants of the Helsinki February Workshop 2018 on Theory of Distributed Computing for discussions related to the decidability of \(\mathsf {LCL}\)s on trees. We would also like to thank the anonymous reviewers of previous versions of this works for their helpful comments and feedback.

Yi-Jun Chang was supported by Dr. Max Rössler, by the Walter Haefner Foundation, and by the ETH Zürich Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Studený .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, YJ., Studený, J., Suomela, J. (2021). Distributed Graph Problems Through an Automata-Theoretic Lens. In: Jurdziński, T., Schmid, S. (eds) Structural Information and Communication Complexity. SIROCCO 2021. Lecture Notes in Computer Science(), vol 12810. Springer, Cham. https://doi.org/10.1007/978-3-030-79527-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79527-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79526-9

  • Online ISBN: 978-3-030-79527-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics