Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2897518.2897570acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

A lower bound for the distributed Lovász local lemma

Published: 19 June 2016 Publication History
  • Get Citation Alerts
  • Abstract

    We show that any randomised Monte Carlo distributed algorithm for the Lovász local lemma requires Omega(log log n) communication rounds, assuming that it finds a correct assignment with high probability. Our result holds even in the special case of d = O(1), where d is the maximum degree of the dependency graph. By prior work, there are distributed algorithms for the Lovász local lemma with a running time of O(log n) rounds in bounded-degree graphs, and the best lower bound before our work was Omega(log* n) rounds [Chung et al. 2014].

    References

    [1]
    ep(d + 1) < 1 O(log n log d) {11, 19} epd 2 < 1 O(log n)
    [2]
    pf (d) < 1, where f (d) exponential O(log n/ log log n)
    [3]
    pf (d) ≤ 1 for any f Ω(log ∗ n)
    [4]
    N. Alon. A parallel algorithmic version of the local lemma. Random Structures & Algorithms, 2(4):367–378, 1991.
    [5]
    N. Alon. On constant time approximation of parameters of bounded degree graphs. In O. Goldreich, editor, Property Testing, volume 6390 of Lecture Notes in Computer Science, pages 234–239. Springer, 2010.
    [7]
    N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, Hoboken, NJ, USA, third edition, 2008.
    [8]
    L. Barenboim and M. Elkin. Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan & Claypool, 2013.
    [10]
    L. Barenboim, M. Elkin, and F. Kuhn. Distributed (∆ + 1)-coloring in linear (in ∆) time. SIAM Journal on Computing, 43(1):72–95, 2014.
    [12]
    L. Barenboim, M. Elkin, S. Pettie, and J. Schneider. The locality of distributed symmetry breaking. In Proc. 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pages 321–330. IEEE Computer Society Press, 2012.
    [14]
    J. Beck. An algorithmic approach to the Lovász local lemma. Random Structures and Algorithms, 2(4):343–365, 1991.
    [15]
    B. Bollobás. Extremal Graph Theory. Academic Press, London, 1978.
    [16]
    K. Chandrasekaran, N. Goyal, and B. Haeupler. Deterministic algorithms for the Lovász local lemma. SIAM Journal on Computing, 42(6):2132–2155, 2013.
    [18]
    Y.-J. Chang, T. Kopelowitz, and S. Pettie. An exponential separation between randomized and deterministic complexity in the LOCAL model, February 2016.
    [19]
    arXiv:1602.08166.
    [20]
    K.-M. Chung, S. Pettie, and H.-H. Su. Distributed algorithms for the Lovász local lemma and graph coloring. In Proc. 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2014), pages 134–143. ACM Press, 2014.
    [22]
    A. Czumaj and C. Scheideler. Coloring nonuniform hypergraphs: A new algorithmic approach to the general Lovász local lemma. Random Structures & Algorithms, 17(3–4):213–237, 2000.
    [23]
    AID-RSA3>3.0.CO;2-Y.
    [24]
    A. Czumaj and C. Scheideler. A new algorithmic approach to the general Lovász local lemma with applications to scheduling and satisfiability problems. In Proc. 32nd Annual ACM Symposium on Theory of Computing (STOC 2000), pages 38–47. ACM, 2000.
    [26]
    A. Czygrinow, M. Ha´ n´ ckowiak, and W. Wawrzyniak. Fast distributed approximations in planar graphs. In Proc. 22nd International Symposium on Distributed Computing (DISC 2008), volume 5218 of Lecture Notes in Computer Science, pages 78–92. Springer, 2008.
    [28]
    R. Diestel. Graph Theory. Springer, Berlin, 4th edition, 2010. http://diestel-graph-theory.com/.
    [29]
    M. Elkin, S. Pettie, and H.-H. Su. (2∆ − 1)-edge-coloring is much easier than maximal matching in the distributed setting. In Proc. 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 355–370. SIAM, 2015.
    [31]
    P. Erd˝ os and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. Infinite and finite sets, 2(2):609–627, 1975.
    [32]
    D. Gamarnik and M. Sudan. Limits of local algorithms over sparse random graphs. In Proc. 5th Conference on Innovations in Theoretical Computer Science (ITCS 2014), pages 369–376. ACM Press, 2014.
    [33]
    arXiv:arXiv:1304.1831.
    [34]
    M. Ghaffari. An improved distributed algorithm for maximal independent set. In Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016). SIAM, 2016. To appear. arXiv:1506.05093.
    [35]
    M. Göös, J. Hirvonen, and J. Suomela. Lower bounds for local approximation. Journal of the ACM, 60(5):39:1–23, 2013.
    [36]
    arXiv:1201.6675.
    [37]
    M. Göös, J. Hirvonen, and J. Suomela. Linear-in-∆ lower bounds in the LOCAL model. Distributed Computing, 2015.
    [38]
    arXiv:1304.1007.
    [39]
    B. Haeupler and D. G. Harris. Improved bounds and parallel algorithms for the Lovász local lemma, September 2015.
    [40]
    arXiv:1509.06430.
    [41]
    B. Haeupler, B. Saha, and A. Srinivasan. New constructive aspects of the Lovász local lemma. Journal of the ACM, 58(6):28:1–28:28, 2011.
    [42]
    arXiv:arXiv:1001.1231v5.
    [43]
    F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In Proc. 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC 2004), pages 300–309. ACM Press, 2004.
    [45]
    F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pages 980–989. ACM Press, 2006.
    [47]
    T. Leighton, B. Maggs, and A. W. Richa. Fast algorithms for finding O(congestion + dilation) packet routing schedules. Combinatorica, 19(3):375–401, 1999.
    [49]
    C. Lenzen and R. Wattenhofer. Leveraging Linial’s locality limit. In Proc. 22nd International Symposium on Distributed Computing (DISC 2008), volume 5218 of Lecture Notes in Computer Science, pages 394–407. Springer, 2008.
    [51]
    N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193–201, 1992.
    [53]
    M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15(4):1036–1053, 1986.
    [55]
    M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge, UK, 2005.
    [56]
    M. Molloy and B. Reed. Further algorithmic aspects of the local lemma. In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC 1998), pages 524–529. ACM, 1998.
    [58]
    M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method. Springer-Verlag, Berlin, 2002.
    [59]
    R. Moser. A constructive proof of the Lovász local lemma. In Proc. 41st Annual ACM Symposium on Theory of Computing (STOC 2009), pages 343–350. ACM, 2009.
    [61]
    R. A. Moser and G. Tardos. A constructive proof of the general Lovász local lemma. Journal of the ACM, 57(2):11:1–11:15, 2010.
    [62]
    arXiv:0903.0544.
    [63]
    M. Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM Journal on Discrete Mathematics, 4(3):409–412, 1991.
    [65]
    M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on Computing, 24(6):1259–1277, 1995.
    [67]
    D. Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia, 2000.
    [68]
    J. B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.
    [69]
    A. Srinivasan. An extension of the Lovász local lemma, and its applications to integer programming. SIAM Journal on Computing, 36(3):609–634, 2006.
    [70]
    A. Srinivasan. Improved algorithmic versions of the Lovász local lemma. In Proc. 19h Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pages 611–620. SIAM, 2008.
    [71]
    J. Suomela. Survey of local algorithms. ACM Computing Surveys, 45(2):24:1–40, 2013.
    [72]
    http://www.cs.helsinki.fi/local-survey/. Introduction Distributed Lovász Local Lemma Main Result and Key Techniques Prior Work on LLL Prior Work on Other Lower Bounds Preliminaries Colourings Model of Computation Local Neighbourhoods Distributed Sinkless Orientation and Sinkless Colouring Distributed Lovász Local Lemma From LLL to Sinkless Orientation The Mutual Speedup Lemma From Sinkless Colouring to Sinkless Orientation From Sinkless Orientation Back to Sinkless Colouring The Speedup Lemma Lower Bounds Conclusions Acknowledgements References

    Cited By

    View all
    • (2024)Brief Announcement: Local Advice and Local DecompressionProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662805(117-120)Online publication date: 17-Jun-2024
    • (2024)Tight Lower Bounds in the Supported LOCAL ModelProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662798(95-105)Online publication date: 17-Jun-2024
    • (2024)No Distributed Quantum Advantage for Approximate Graph ColoringProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649679(1901-1910)Online publication date: 10-Jun-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    STOC '16: Proceedings of the forty-eighth annual ACM symposium on Theory of Computing
    June 2016
    1141 pages
    ISBN:9781450341325
    DOI:10.1145/2897518
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 19 June 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Lovász local lemma
    2. distributed complexity
    3. graph colouring
    4. locality
    5. lower bounds
    6. sinkless orientations

    Qualifiers

    • Research-article

    Conference

    STOC '16
    Sponsor:
    STOC '16: Symposium on Theory of Computing
    June 19 - 21, 2016
    MA, Cambridge, USA

    Acceptance Rates

    Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)33
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 12 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Brief Announcement: Local Advice and Local DecompressionProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662805(117-120)Online publication date: 17-Jun-2024
    • (2024)Tight Lower Bounds in the Supported LOCAL ModelProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662798(95-105)Online publication date: 17-Jun-2024
    • (2024)No Distributed Quantum Advantage for Approximate Graph ColoringProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649679(1901-1910)Online publication date: 10-Jun-2024
    • (2024)Component stability in low-space massively parallel computationDistributed Computing10.1007/s00446-024-00461-937:1(35-64)Online publication date: 8-Feb-2024
    • (2024)Distributed Binary Labeling Problems in High-Degree GraphsStructural Information and Communication Complexity10.1007/978-3-031-60603-8_22(402-419)Online publication date: 27-May-2024
    • (2023)Distributed Graph Coloring Made EasyACM Transactions on Parallel Computing10.1145/360589610:4(1-21)Online publication date: 17-Aug-2023
    • (2023)Distributed graph problems through an automata-theoretic lensTheoretical Computer Science10.1016/j.tcs.2023.113710951:COnline publication date: 24-Mar-2023
    • (2023)Node and edge averaged complexities of local graph problemsDistributed Computing10.1007/s00446-023-00453-136:4(451-473)Online publication date: 5-Jul-2023
    • (2023)Distributed Coloring of HypergraphsStructural Information and Communication Complexity10.1007/978-3-031-32733-9_5(89-111)Online publication date: 25-May-2023
    • (2022)Distributed ∆-coloring plays hide-and-seekProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520027(464-477)Online publication date: 9-Jun-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media