Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Teleoperation Robot Machining for Large Casting Components

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13014))

Included in the following conference series:

Abstract

Casting is an important means of components manufacturing. However, the machining of residual characteristics (RC) is a long-standing challenge, especially for large casting components. The reason is that the RC of casting components are different in size, complex in shape and random in distribution. It is difficult to deal with that by manual, serial robots, or machine tools. To address this problem, this paper proposes a robot-based teleoperation machining approach. A novel five degrees of freedom (5-DoF) hybrid machining robot developed by us is utilized as the slave robot. Then the teleoperation machining experiment of a large casting planet carrier was carried out. The results show that the machining efficiency is improved by about 10 times and the completion rate is above 95%. This provides a new idea for the machining of large components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sabourin, L., Robin, V., Gogu, G.: Robotized cell dedicated to finishing operations, by machining and polishing, on large cast parts. Mec. Ind. 12(6), 495–502 (2011)

    Google Scholar 

  2. Cho, C.-H., Kim, J.-H., Soowon, C., et al.: Improvement of a deburring tool for intersecting holes with reduced irregular cutting of burr edge. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 227(11), 1693–1703 (2013)

    Google Scholar 

  3. Miao, C., Ye, H., Hu, X.Q.: Occupational health risk assessment of a foundry enterprise based on ICMM method. Ind. Hyg. Occup. Dis. 46(2), 129–133+136 (2020)

    Google Scholar 

  4. http://www.barinder.jp/english/products.php.

  5. Dumas, C., Caro, S., Cherif, M.: Joint stiffness identification of industrial serial robots. Robotica 30(4), 649–659 (2012)

    Article  Google Scholar 

  6. Bogue, R.: Finishing robots: a review of technologies and applications. Ind. Robot. 36(1), 6–12 (2009)

    Article  Google Scholar 

  7. http://www.maus.it/

  8. Lee, H.M., Kim, J.B.: A survey on robot teaching: categorization and brief review. Appl. Mech. Mater. 330, 648–656 (2013)

    Article  Google Scholar 

  9. Zhou, B., Zhang, X., Meng, Z., et al.: Off-line programming system of industrial robot for spraying manufacturing optimization. In: Proceedings of the 33rd Chinese Control Conference, pp. 8495–8500. IEEE, Nanjing (2014)

    Google Scholar 

  10. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1

    Book  MATH  Google Scholar 

  11. García, C.E., Postigo, J.F., Castro, A., et al.: On-line estimation of communication time delay in a robotic teleoperation system. Lat. Am. Appl. Res. 33(4), 371–377 (2003)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by National Natural Science Foundation of China (No. 51875391, No. 51875392); Tianjin Science and Technology Plan Project of China (No. 20YDLZGX00290, No. 18PTLCSY00080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M. et al. (2021). Teleoperation Robot Machining for Large Casting Components. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds) Intelligent Robotics and Applications. ICIRA 2021. Lecture Notes in Computer Science(), vol 13014. Springer, Cham. https://doi.org/10.1007/978-3-030-89098-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89098-8_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89097-1

  • Online ISBN: 978-3-030-89098-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics